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1. INTRODUCTION 

 The sodaconstructor applet is simply a simulator of the mechanical laws of physics. In 

the following chapters of this article, we will investigate these physical laws and the way they 

have been implemented in the applet. Here I wish to express just a few preliminary 

considerations. 

First, I wish to say that in this work you will not find anything really original in the scientific 

meaning of the term. Everything reported in this paper is a well-known notion of physics and 

mathematics. Therefore, this article can’t be catalogued in the category of scientific work, but 

rather in the category of didactical publication. Thanks to this paper, anyone with a minimal 

knowledge of the main mathematical rules of analysis can discover with his own hands how 

the sodaconstructor applet works. 

A second thing that I wish to say here is particularly addressed to anyone who because of his 

young age or particular field of study doesn’t totally understand the mathematics in this work. 

For you I repeat another time that there is nothing special presented in this work. All these 

things, scientifically speaking, are trivial. If you wish to see something really original, then 

look for models in the sodazoo. There you will find genuine creativity. Let me use a simple 

analogy that I think better explains what I’m trying to say. The sodaconstructor applet is 

something like a musical instrument. It isn’t particular important who made a piano; it is more 

important who plays the piano! I’m not sure of this, but I would bet money that Mozart and 

Beethoven knew nothing about the mechanism behind their own pianos. So, I wish to stress 

one thing: please, don’t stop playing the piano. 

Finally, I wish to provide here a short description of the contents of this work. This paper is 

organized in chapters, further separated, where necessary, into subsections. In the second 

chapter particular units of measurement are studied. In the third chapter virtual experiments 

are realized in order to investigate the physical constants adopted by the applet. In this chapter 

the functionalities of the applet’s cursors of gravity, friction and stiffness are experimentally 

determined. All these experiments have been adequately described and the corresponding 

links are included in the text of the explanations. In the fourth chapter, the main cinematic 

quantities for the description of the motion of free masses are introduced and discussed. In the 

fifth chapter, a simple definition of a model is introduced. The sixth chapter gives a detailed 

http://sodaplay.com/zoo/index.htm
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analysis of the forces implemented in the applet. The seventh chapter provides a detailed 

mathematical explanation of the behavior of springs and muscles. In this chapter the 

functionalities of the cursors of the muscle control panel are completely clarified. In the 

eighth chapter, the equations of motion for a generic model are formulated, while in the ninth 

chapter, we find a simple numerical procedure for their integration. In the tenth chapter, a 

simplified method for the study of models is introduced. This chapter studies polygons, 

tension springs, and linear motors. Finally, the eleventh chapter contains the conclusion and 

acknowledgements. The paper is also accompanied by three appendixes, in which specific 

mathematical arguments are studied in-depth. 

 

  November 2002 
  Jeckyll 

mailto:henry_jeckyll@hotmail.com
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2. UNITS OF MEASUREMENT 

 In the real world, especially in scientific and technical communications, all physical 

quantities are expressed in units of measurement defined by the International System (S.I.). 

We all know that the unit of measurement for length is the meter (m), the unit of measurement 

for time is the second (s), the unit of measurement for mass is the kilogram (kg), and so on for 

the other fundamental quantities (temperature, intensity of current, etc.). In the soda universe, 

however, we can’t use these units of measurement. To illustrate why, let’s explore this 

seemingly simple question: how long, for example, is the old charming daintywalker? I have a 

17-inch monitor, and I measure a length of 7.9 cm. Is this the right answer? Certainly not. 

Another person with a different size monitor would find a different measure. Furthermore, it 

is even possible that two different people, each with the same size monitor, would find two 

different measures because their monitors are of different brands. It’s clear why it isn’t 

adequate to use the meter (and its submultiples) as the unit of measurement for length in the 

sodaconstructor: the measurement would be slightly different for each person. 

Obviously, in the soda universe it is essential to choose another unit of measurement for 

length. Since the amount of pixels in the sodaconstructor window is the same for all users 

( : see pxlpxl 428657 × Dimensions of the Sodaconstructor Window), independent of the 

dimensions of the monitor screen, in this paper we will use the pixel as the unit of 

measurement for length. The symbol that we will adopt will be: pxl. The main problem with 

this new unit of measurement is this: how is it possible to measure something in pixels 

without counting all the pixels one by one? This is not a trivial question, because to count 

many pixels on the screen is excruciatingly painful. Therefore, I’ve used the following 

technique: I know that a fixed mass (I really don’t like this denomination, I would have 

preferred fixed point) has the following dimensions: 6 . So, by arranging many 

fixed masses like a chessboard, it is possible to measure the distance between two different 

points on the screen by simply counting the fixed masses between the two points and 

multiplying the amount by 6. Obviously, it is possible that the length we want to measure is 

not a multiple of 6; in this case we will arrange the fixed masses like a chessboard until we 

are less than 6 pixels from the endpoint, and we will count the remaining pixels, 5 at the most. 

Sometimes, however, the length that we want to measure is so great that the above fixed 

masses method would be equally painful for our eyes and patience. In this case it is possible 

pxlpxl 6×

http://sodaplay.com/constructor/player?&getmodel=sodaplay+daintywalker
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dimensions
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to apply a mixed method, such as using fixed masses to measure distances greater than 6 

pixels. One of my favorite ways to get equal distances between fixed points is by constructing 

springs at 0°, 45° and 90°, angles which are easy to precisely create in the sodaconstructor. 

Using these lines to make perfect squares, it is easy to replicate a fixed length many times, in 

order to measure using larger increments. I’ve used this technique often, as you will see in 

examples referred to later (you will find one example in Dimensions of the Sodaconstructor 

Window). 

Another physical quantity involved in these studies is time. Again, it is impossible to use the 

usual unit of measurement (seconds s). In principle it should be possible to use the second (s) 

as a measurement of time, because advanced simulation programs like our beloved 

Sodaconstructor should synchronize their calculus with the internal microprocessor clock. For 

this reason, the duration of the simulation should be uniform in all different computers. 

However, all computers are different from each other. Computers today are assembled with 

many different parts: there are the microprocessors, the main boards, the accelerated graphic 

devices, and many other such devilries. (Are there any of you young people old enough to 

remember the simplicity of the Commodore 64? I bet you don’t.) The real performance of a 

computer depends greatly on all its different components. Therefore, it is very difficult to find 

two different computers with identical performances. For these reasons, I suspect that the 

same simulation could have different durations on different computers. It may seem that I am 

being unnecessarily precise. Nevertheless, as you will see in the next chapter, I will need 

maximum precision to get reliable results. 

Just as with pixels, the number of frames necessary to complete a simulation is exactly the 

same for each computer. So, to avoid any ambiguity, we will use the frame as our unit of 

measurement for time. The symbol that we will adopt will be: frm. Now the problem is: how 

can we count the amount of frames that it takes for a particular model to complete a 

simulation? The surprising answer is: using an ordinary chronometer. This seems like a 

contradiction, but it isn’t. The main problem is that in the sodaconstructor applet there isn’t a 

frame counter, so the only thing that we can use is a chronometer. Using the new sodarace 

timetrial applet, each of us can find how many frames there are in a second for our own 

computer’s performance. Those of us with a computer of high performance will get many 

frames in a second. Those of us with a computer of less power will not get as many frames in 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dimensions
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dimensions
http://sodarace.net/timetrial/index.jsp
http://sodarace.net/timetrial/index.jsp
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a second. Thanks to the synchronicity between the simulator’s computation and the internal 

clock of the computer, the difference between two different computers will probably never be 

very high. Still, I think there will always be a difference. In any case, if each of us finds for 

his own computer how many frames there are in a second, it solves the problem. After this 

has been determined, the length in frames of a particular simulation can be calculated by 

multiplying the number of seconds by the number of frames per second. The result in frames 

should be the same for everyone, completely independent of the computer’s performance. 

The last question is: how can I find how many frames there are in a second of my computer’s 

work? This can be determined using any model in the sodarace timetrial. In order to make this 

as accurate as possible, I made a very slow model (Slow walker). In my computer it covered 

the whole route in 966  (1 : an eternity) for a total of 107036 . So, the time 

conversion ratio ( t ) for my computer is: 

sec 606 ′′′ frm

cr

 

 
sec
frmtcr 81.110

966
107036

==  (2.1) 

 

This ratio is very important because I use it in the virtual experiences described in the next 

chapter. 

To review, we will be using the following units of measurement: 

 
Table 2.1: The new units of measurement 

Physical quantity Unit of measurement 

Length pxl (pixel) 

Time frm (frame) 

Velocity frmpxl  

Acceleration 2frmpxl  

 

What about mass? We know that the other fundamental physical quantity involved in the 

dynamic problem is mass. Well, in the 8th chapter I will show you mathematically that it isn’t 

http://sodarace.net/timetrial/index.jsp
http://www.sodaplay.com/constructor/timetrial1.htm?&getmodel=Laboratory+Frames_at_second


THE  PHYSICS  BEHIND  THE  SODACONSTRUCTOR   -   by Jeckyll       10/123  

necessary to assume any value for the masses. This is because all masses in the 

sodaconstructor applet are the same. 
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3. DETERMINATION OF THE PHYSICAL CONSTANTS ADOPTED BY THE APPLET 

 As we all know, there are many constants present in the physical laws that govern our 

world. One of the most important constants, one that often persecutes students in school, is 

the earth’s gravitational acceleration constant g. In the proximity of the Earth’s surface, the 

value of this constant is about 28.9 secmg = . Thanks to the knowledge of this constant, we 

can say many things. First, we can say that the velocity of a free falling body close to the 

Earth’s surface increases secm8.9  every second of its falling (this is true only until air 

friction begins to have an effect; i.e. just in the first few seconds of its falling). Another thing 

that this constant allows us to say it is that the weight W (expressed in Newton N) of a generic 

mass m (expressed in kg) is obtained by the rule: 

 

  (3.1) gmW ⋅=

 

These apparently simple things allow us to see how the knowledge of the constant g is, 

without a doubt, very important for a lot of physical and engineering applications. Obviously, 

in addition to the constant g, there are a lot of other constants that are equally important. All 

these constants have specific values commonly known by the scientific community. The 

question is: how were these constants originally found? The answer is very simple: by means 

of experimental tests. 

How does all this relate to the sodaconstructor? To answer this question we must first 

understand exactly what the sodaconstructor is. The sodaconstructor is simply a simulator of 

physical laws. In the sodaconstructor there are a number of mechanical laws1 that, like in 

reality, cannot be violated. Therefore, in principle, it should be possible to determine the 

physical constants of the laws used in the sodaconstructor by means of virtual experiments, 

much like the experimental tests that allow us to understand nature in the real world. 

Of course, if I were an expert in computer languages I would simply find the 

sodaconstructor’s physical constants by looking for them in the soda algorithm. 

Unfortunately, I am not an expert. So the best thing that I can do is transform myself into a 

                                                 
1 The Newtonian laws of dynamics, Hooke’s law for the springs, the Newtonian law for the fluid’s friction, the 
laws of the quasi-elastic impact between masses and walls. 
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virtual Galileo (Italian scientist of the seventeenth century) in order to investigate the soda 

universe. 

I’ve created a sodaconstructor Laboratory where I’ve executed many virtual experiments. 

Thanks to these experiments I was able to find how the well-known cursors for gravity (g), 

friction (f) and stiffness (k) actually work (see Fig. 3.1). 

 
Figure 3.1: The physical sodaconstructor constants 

 

In the following parts of this chapter I will explain exactly what I’ve determined about each 

one of the above constants. I’ve also investigated about the coefficients of dynamical 

restitutions of the walls and ground. 

 

3.1 THE GRAVITY 

 In the real universe we could think of a simple experimental test to determine the 

gravitational acceleration constant g. We could let a little object like a stone fall from a fixed 

height h. Meanwhile we could measure the time t it takes the stone to fall by means of a 

chronometer. Knowing that the falling stone moves with a uniformly accelerated motion, we 

could use the following formula: 

 

 2
2
1 gth =  (3.2) 

 

to get the acceleration g: 

 

 
2

2
t
hg =  (3.3) 

 

http://sodaplay.com/constructor/player?&getmodel=Laboratory
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In fact, this method of determining the constant g isn’t very accurate, because air friction will 

have an effect. A more accurate method of determining the constant g is the pendulum 

method. It is possible to find the constant g by simply measuring the period of a complete 

oscillation of a long pendulum2. 

What can we do in the soda universe? Exactly the same things! We could get the acceleration 

constant3 g by using the experiment of a mass falling. Fortunately, in the soda universe we 

have the option to turn off the “air” friction completely, so we don’t need to worry about the 

problem described above. Still, this method is a bit problematic. First, I don’t have an 

accurate chronometer; I just measure time with my analog clock, which means I only have the 

accuracy of one second (an eternity compared to the accuracy required in this sort of 

experiment). Second, it is very difficult to start the chronometer exactly when the mass begins 

falling. Third, it is also very difficult to stop the chronometer exactly when the mass hits the 

ground. As a result, I would get a measure with an intolerable error. What could I do to fix 

this problem? I could conduct this experiment a number of times, so that I could reduce the 

margin of error. But this method it is too long and tedious, even for my patience. However, 

there is a more convenient and accurate solution: to use the pendulum method. Using as long 

a pendulum as possible and measuring its period2, we can discover the gravitational 

acceleration constant g. 

In Appendix A, I will explain in a detailed manner the mathematical theory behind the 

pendulum method. Therefore, in the following description, I will restrict myself to explaining 

only the main relation that we will use. 

As discussed in Appendix A, when the maximum angular excursion  (expressed in 

radiant rad) of a pendulum is such that it is possible to use the following approximation: 

maxα

 

  (3.4) maxmaxsin α≈α

                                                 
2 The time that the pendulum needs to reach its maximum excursion starting from the identical position. 
3 There is a point I want to make clear about the word “constant” in the soda universe. As we well know it is 
possible to change the gravity by moving the above mentioned gravity cursor. Therefore, in principle, the gravity 
isn’t constant. Nevertheless, if we choose a particular level of gravity, our models are moving with a value of 
gravity that doesn’t change over time; in this case the gravity is constant. 
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(just when the value of  is very small; see Fig. 3.2) the period T of an oscillation 

depends only on the length l of the pendulum and the gravity constant g, by means of the 

formula: 

maxα

 

 
g
lT π= 2  (3.5) 

maxα  maxα  

 l 

α  

 
Figure 3.2: Angular excursion of a pendulum 

 

By measuring the period T and knowing the length of the pendulum it is possible to get the 

constant g by means of the following inverse formula: 

 

 
2

24
T
lg π=  (3.6) 

 

Some might argue that this unnecessarily complicated, because to measure the period T I will 

have the same difficulties as described for the falling mass method. This isn’t true! If friction 

is dropped to zero, the pendulum’s oscillation could last forever. Therefore, it will be possible 

to measure not just one complete oscillation but many oscillations. In this way the inevitable 

errors mentioned above will be distributed in many oscillations, reducing their effect on the 

final computation. This is exactly what I’ve done. Fixing a particular value for the gravity by 
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moving the well-known cursor4, I measured the elapsed time for many oscillations. Then, I 

divided the overall time by the number of complete oscillations, giving me the period T of a 

single oscillation with the required accuracy. 

Before I start explaining the virtual experiences about gravity, I will say just one thing about 

the cursors shown in Figure 3.1. Each one of these cursors can assume 108 different positions. 

Each of these 108 positions differs from the previous or the following position by one pixel of 

displacement. We have position 0 when the cursor is at the bottom (in this position the 

physical quantity associated with the cursor has the value of zero), and we have position 107 

when the cursor is at the top (in this position the physical quantity associated with the cursor 

has the maximum value). 

In the following section we will look for the rules of variation for the constants g, f, and k in 

respect to their cursor position. So, naming these positions ,  and , we will look for 

the following three laws: 

gp fp kp

 

 
( )
( )
( )

107,,2,1,0,with , K=








kfg

k

f

g

ppp
pk
pf
pg

 (3.7) 

 

• Experiment 1 

 Using Experiment 1 it was possible to find the value of the gravitational acceleration 

constant g (in 2frmpxl ) when the gravity cursor position is . The length of the 

pendulum in this case is l . 

20=gp

pxl374=

I measured the time it took for 100 complete oscillations. On my computer this time was 

 ( 3 ), so the period of a single oscillation was: sect 293= 54 ′′′

 secT 93.2
100
293

==  

By using the time conversion ratio (2.1) the period T becomes: 

                                                 
4 I’ve also dropped the friction to zero and taken at the maximum value the rigidity of the spring that connects 
the free mass at the fixed point. In the pendulum theory the connection between the mass and the fixed point 
should be perfectly rigid. 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_g20
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 frm
sec
frmsecT 67.32481.11093.2 =⋅=  

Applying (3.6) I finally found: 

 ( )
2

140067762.020
frm
pxlg =  

For now we will ignore the question of significant digits. We will discuss this at the end of the 

chapter. 

 

• Experiment 2 

 Using Experiment 2 it was possible to find the value of the gravitational acceleration 

constant g (in 2frmpxl

pxl374=

) when the cursor position is . The length of the pendulum 

in this case is l . 

29=gp

I measured the time it took for 100 complete oscillations. On my computer this time was 

 ( ), so the period of a single oscillation was: sect 202= 223 ′′′

 secT 02.2
100
202

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 84.22381.11002.2 =⋅=  

Applying (3.6) I finally found: 

 ( )
2

294693591.029
frm
pxlg =  

 

• Experiment 3 

 Using Experiment 3 it was possible to find the value of the gravitational acceleration 

constant g (in 2frmpxl

pxl375=

) when the cursor position is . The length of the pendulum 

in this case is l . 

40=gp

I measured the time it took for 150 complete oscillations. On my computer this time was 

 ( 0 ), so the period of a single oscillation was: sect 220= 43 ′′′

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_g29
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_g40
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 secT 47.1
150
220

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 52.16281.11047.1 =⋅=  

Applying (3.6) I finally found: 

 ( )
2

560493075.040
frm
pxlg =  

 

• Experiment 4 

 Using Experiment 4 it was possible to find the value of the gravitational acceleration 

constant g (in 2frmpxl

pxl375=

) when the cursor position is . The length of the pendulum 

in this case is l . 

50=gp

I measured the time it took for 150 complete oscillations. On my computer this time was 

 ( 6 ), so the period of a single oscillation was: sect 176= 52 ′′′

 secT 17.1
150
176

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 02.13081.11017.1 =⋅=  

Applying (3.6) I finally found: 

 ( )
2

875770431.050
frm
pxlg =  

 

• Experiment 5 

 Using Experiment 5 was possible to get the value of the gravitational acceleration 

constant g (in 2frmpxl

pxl376=

) when the cursor position is . The length of the pendulum 

in this case is l . 

60=gp

I measured the time it took for 200 complete oscillations. On my computer this time was 

 ( 6 ), so the period of a single oscillation was: sect 196= 13 ′′′

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_g50
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_g60
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 secT 98.0
200
196

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 59.10881.11098.0 =⋅=  

Applying (3.6) I finally found: 

 ( )
2

25874431.160
frm
pxlg =  

 

• Results Analysis 

 Displaying the above results in a graph in which the horizontal axis represents the cursor 

position  and the vertical axis represents the gravitational acceleration constant g, we get 

the curve of Figure 3.3: 

gp

 
 












2frm

pxlg  

gp  
10 20 30 40 50 60 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

 
Figure 3.3: gravity trend 

 

Looking the curve of Figure 3.3 we can immediately see that the relation between g and  

is not linear. Since the curve looks more similar to a parabola, we can try to calculate the ratio 

between g and . The following table shows the result of this calculation for all the above 

experiences: 

gp

2
gp
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Table 3.1: Ratio 2
gpg  for the above experiences 

gp  











2frm

pxlg  2
gp

g  

20 0.140067762 0.000350169 

29 0.294693591 0.000350409 

40 0.560493075 0.000350308 

50 0.875770431 0.000350308 

60 1.25874431 0.000349651 

 

Since the ratio 2
gpg  is practically constant for all 5 of the above virtual experiences, we can 

affirm that between g and  there is a quadratic proportionality: gp

 

 ( )











⋅=

2
2

frm
pxlpgpg gPg  (3.8) 

 

In the formula above I’ve introduced the gravity parameter  which is a constant parameter 

implemented in the sodaconstructor applet. If I were extremely precise I would find the 

gravity parameter  by means of a quadratic interpolation of the above data, but 

remembering that all of this is just play, I will restrict myself to the calculation of the medium 

value of . From Table 3.1 we can find the following medium value for : 

pg

pg

pg pg

 

 












⋅
=

22
000350169.0

g
p

pfrm
pxlg  (3.9) 

 

Figure 3.4 displays the numerical data of Table 3.1 and the continuous curve made from (3.8) 

and (3.9). As can clearly be seen, in the range of  that was used in the experiments 

( ) there is a perfect overlapping. 

gp

[ 60,20∈gp ]
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Figure 3.4: Overlapping between numerical data and theoretical curve  

 

3.2 THE STIFFNESS (STATIC METHOD) 

 The main components of the sodaconstructor are springs and muscles. These components 

have elastic properties that are defined by a physical quantity called stiffness. To understand 

what the elastic properties of springs exactly are and how these properties are represented by 

stiffness, we could make some observations of springs in the real world. We all know what 

real springs are and what characteristics they possess. We know, for example, that a spring 

changes length only when force is applied to its ends, and that when this force stops the spring 

returns to its original length. We also know that the force necessary to pull a spring increases 

with the spring’s extension. Finally, we know that two springs of different strengths subjected 

to the same forces have different extensions. 

These observations show the basic concepts of elasticity and stiffness. We will say that a body 

is an elastic body if its deformations vanish when their causes are removed. We will say that a 

body is a linear elastic body if its deformations are directly proportional to the forces applied 

to the body. Finally we will define stiffness as how well an elastic body can maintain its 

original shape (or length if we are specifically speaking of a spring) when it is subjected to 

external forces. 

For springs, all these characteristics can be mathematically defined in a very simple way. 
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F 

l  
0l  

 
Figure 3.5: Extension of a spring subjected to traction by a force F 

 

Figure 3.5 shows a spring before and after the action of a traction force F. Calling  the 

length of the spring at rest and l the length of the spring after extended, we will define the 

quantity of the spring’s extension: 

0l

 

  (3.10) 0lll −=∆

 

By definition, the extension of a spring will be positive if its final length l is greater than the 

initial length . The extension of a spring will be negative if its final length l is less than the 

initial length . 

0l

0l

If the spring is a linear elastic spring (like the springs in the sodaconstructor applet), then the 

spring’s extension  will be directly proportional to the force’s intensity F by means of the 

relation: 

l∆

 

  (3.11) lkF ∆⋅=

 

This law is known as Hooke’s law5. The constant k that appears in (3.11) is the stiffness of the 

spring and is a physical quantity that is always positive. Its value is representative of the 

spring’s strength. Using (3.11), we can say: 

                                                 
5 Robert Hooke was an English scientist of seventeenth century, contemporaneous of Isaac Newton. It seems that 
the two scientists weren’t particularly fond of each other. It is ironic that in our beloved sodaconstructor applet 
their laws live together harmoniously. 
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k
Fl =∆  (3.12) 

 

It is easy to understand that under the same force, springs with high values of stiffness k will 

have extensions smaller than those of springs with low stiffness. 

From (3.11) we can also see that if the force is positive, its effect on the spring will be 

positive (extension), while if the force is negative, its effect on the spring will be negative 

(compression). 

The stiffness k that appears in (3.11) and (3.12) is the same physical quantity that can be 

changed with the cursor k (see Fig. 3.1) in the sodaconstructor applet. There is one more thing 

I must emphasize about the sodaconstructor’s virtual springs: all springs, regardless of their 

initial length, have the same stiffness6. In the current version of the applet it is impossible to 

have springs of independent stiffness in the same simulation. 

By means of static virtual experiments, the expression (3.11) will allow us to determine the 

value of the stiffness k depending on the position of the corresponding cursor. Obviously, in 

order to use (3.11) to find the stiffness k, we will need a static force F. But how can we create 

a static force? We can simply use the force of gravity. We know that a mass m in a constant 

gravitational field has a weight given by the expression (3.1). Therefore, in order to create a 

constant force in our experiments, we will use the virtual weight of free masses in the 

sodaconstructor applet. 

It might be important at this point to say something about the sodaconstructor’s free masses. 

By means of very simple virtual experiments it is possible to prove that all free masses are 

equal7, so we will have just one value of mass m for all free masses. At the moment, we will 

leave this value unknown. In the Chapter 8 we will see why it is possible to avoid having to 

assume any specific value for m. 

 

                                                 
6 i.e. all springs, regardless of their initial length, will be subject to the same extension under the same force. 
7 I will leave to you the pleasure of devising some simple experiments. 
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• The Static Experiments 

 Just as we did with the gravity g, our objective will be to find how the spring’s stiffness k 

changes according to the position of the corresponding cursor; i.e. our objective will be to 

discover the law: 

 

  (3.13) ( kpkk = )
 

In order to find this law we will apply the weight of a free mass to springs of different 

lengths8, using different fixed values of stiffness. Therefore, the constant force F in the 

relation (3.11) for us will be the weight W of a free mass given by (3.1). Then we will have: 

 

  (3.14) lkgmWF ∆⋅=⋅==

 

so that: 

 

 m
l

gk ⋅
∆

=  (3.15) 

 

In (3.15), we know the value of g thanks to (3.8) and (3.9), and we will find the extension  

by measuring it. As I’ve said before, at the moment we will leave the value of m unknown, so 

it will be helpful to define the following physical quantity: 

l∆

 

 
l

g
m
kk

∆
==  (3.16) 

 

which is independent of the value of m. We will call k  specific stiffness. 

Thanks to the introduction of specific stiffness we can write (3.15) as: 

 

 mkk ⋅=  (3.17) 
                                                 
8 I’ve used springs of different lengths to prove without any doubt that the stiffness of a spring is absolutely 
independent of its initial length. 
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• Experiment 6 

 In Experiment 6 the extensions of springs of different lengths have been measured with 

the stiffness cursor position equal to . The force F has been varied by changing the 

position of the gravity cursor from  to  by increments of 10. For each setting 

of gravity, the extension of the springs has been measured and the results reported in the 

following Table 3.2: 

20=kp

30=gp 100=gp

 
Table 3.2: Spring’s extension for different values of gravity when  20=kp

gp  











2frm

pxlg  [ ]pxll∆  












∆ 2
1

frml
g  

30 0.3151521 18 0.01750845 

40 0.5602704 32 0.01750845 

50 0.8754225 50 0.01750845 

60 1.2606084 72 0.01750845 

70 1.7158281 98 0.01750845 

80 2.2410816 128 0.01750845 

90 2.8363689 162 0.01750845 

100 3.50169 200 0.01750845 

 

Using the above results, we find the average value of the specific stiffness for the cursor 

position : 20=kp

 

 ( )
2

101750845.020
frm

k =  (3.18) 

 

• Experiment 7 

 In Experiment 7 the extensions of springs of different lengths have been measured with 

the stiffness cursor position equal to . The force F has been varied by changing the 25=kp

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_k20
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_k25
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position of the gravity cursor from  to  by increments of 10. For each setting 

of gravity, the extension of the springs has been measured and the results reported in the 

following Table 3.3: 

30=gp 100=gp












2frm

pxl [ ]pxll
∆

 
Table 3.3: Spring’s extension for different values of gravity when  25=kp

gp  g  ∆  











2

1
frml

g  

30 0.3151521 11 0.028650191 

40 0.5602704 20 0.028013520 

50 0.8754225 32 0.027356953 

60 1.2606084 46 0.027404530 

70 1.7158281 62 0.027674647 

80 2.2410816 81 0.027667674 

90 2.8363689 103 0.027537562 

100 3.50169 128 0.027356953 

 

Using the above results, we find the average value of the specific stiffness for the cursor 

position : 25=kp

 

 ( )
2

1027707754.025
frm

k =  (3.19) 

 

• Experiment 8 

 In Experiment 8 the extensions of springs of different lengths have been measured with 

the stiffness cursor position equal to . The force F has been varied by changing the 

position of the gravity cursor from  to  by increments of 10. For each setting 

of gravity, the extension of the springs has been measured and the results reported in the 

following Table 3.4: 

30=kp

30=gp 100=gp

 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_k30
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Table 3.4: Spring’s extension for different values of gravity when  30=kp

gp  











2frm

pxlg  [ ]pxll∆  












∆ 2
1

frml
g  

30 0.3151521 8 0.039394013 

40 0.5602704 14 0.040019314 

50 0.8754225 22 0.039791932 

60 1.2606084 32 0.039394013 

70 1.7158281 43 0.039902979 

80 2.2410816 56 0.040019314 

90 2.8363689 72 0.039394013 

100 3.50169 88 0.039791932 

 

Using the above results, we find the average value of the specific stiffness for the cursor 

position : 30=kp

 

 ( )
2

1039713439.030
frm

k =  (3.20) 

 

• Results Analysis 

 In this case we have the values of the specific stiffness for only three positions on the 

cursor , so it will be impossible to get as good a curve as we did with the gravity 

experiments. Therefore we will limit ourselves to a simple analysis of the above numerical 

data. Based on the results of our gravity experiments, it is reasonable to guess that the 

relationship between the specific stiffness and  is once again quadratic. In order to verify 

this hypothesis we will calculate the ratio 

kp

kp

( ) 2
kpk pk  for each of the three results reported in 

(3.18), (3.19) and (3.20). 
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Table 3.5: Ratio 2
kpg  for the above experiments 

kp  











2

1
frm

k  











22

1
frmp

k

k
 

20 0.01750845 0.000043771 

25 0.027707754 0.000044332 

30 0.039713439 0.000044126 

 

Because the results of the ratio ( ) 2
kk ppk  are approximately constant, we can assume with 

very little doubt the following rule for specific stiffness: 

 

 ( ) 2
kpk pkpk ⋅=  (3.21) 

 

in which has been introduced the parameter pk  that we will call the stiffness parameter. Just 

as with the gravity parameter , the stiffness parameter pg pk  is a constant parameter 

implemented in the sodaconstructor applet. Its medium value is (see Table 3.5): 

 

 











=

2
1000044077.0

frm
k p  (3.22) 

 

Therefore the rule for the stiffness k, thanks to (3.17) and (3.21), will be: 

 

 ( ) ( ) 2
kpkk pmkmpkpk ⋅⋅=⋅=  (3.23) 

 

3.3 THE STIFFNESS (DYNAMIC METHOD) 

 There is another and more accurate method of determining the stiffness of a spring. This 

method is very similar to the dynamic method that we used for the gravity experiments. By 

simply measuring the period of the oscillation of a spring connected to one mass, it is possible 

to calculate the spring’s stiffness. In the following section I will restrict myself to explain just 
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the main relation that we will use. A more detailed explanation of this method can be found in 

Appendix B. 

 
 

k m  

 
Figure 3.6: System spring-mass 

 

Calling k, m and T respectively the stiffness of a spring, the value of the mass connected with 

the spring and the period of a complete oscillation of the system spring-mass (see Fig. 3.6), it 

is possible to show that the following relation is valid: 

 

 m
T

k
2

24π
=  (3.24) 

 

Using this relation, it is possible to get the stiffness of a spring by measuring the period T. 

Taking into account (3.17), from (3.24) follows immediately the expression for the specific 

stiffness k : 

 

 
2

24
T

k π
=  (3.25) 

 

Obviously, like in the gravity determination, with friction equal to zero the oscillations of the 

spring will last forever. Therefore, to get a more accurate reading, we will measure the 

duration of more than one oscillation. 

 

• Experiment 9 

 In Experiment 9, it was possible to find the value of the specific stiffness k  (in 2frm1 ) 

when the cursor position was . The duration of 100 complete oscillations has been 6=kp

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dynamic_Experiment_k6
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measured. In my computer this time was  ( 22 ), so the period of a single 

oscillation was: 

sect 142= 2 ′′′

8=kp

= sec160

10=kp

 secT 42.1
100
142

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 35.15781.11042.1 =⋅=  

Applying (3.25) I finally found: 

 ( )
2

1001594502.06
frm

k =  

 

• Experiment 10 

 In Experiment 10, it was possible to find the value of the specific stiffness k  

(in 2frm1 ) when the cursor position was . The duration of 150 complete oscillations 

has been measured. In my computer this time was t  ( 02 ), so the period of a 

single oscillation was: 

4 ′′′

 secT 07.1
150
160

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 20.11881.11007.1 =⋅=  

Applying (3.25) I finally found: 

 ( )
2

1002825819.08
frm

k =  

 

• Experiment 11 

 In Experiment 11, it was possible to find the value of the specific stiffness k  

(in 2frm1 ) when the cursor position was . The duration of 150 complete 

oscillations has been measured. In my computer this time was  ( 2 ), so the 

period of a single oscillation was: 

sect 128= 80 ′′′

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dynamic_Experiment_k8
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dynamic_Experiment_k10
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 secT 85.0
150
128

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 56.9481.11085.0 =⋅=  

Applying (3.25) I finally found: 

 ( )
2

1004415343.010
frm

k =  

 

• Experiment 12 

 In Experiment 12, it was possible to find the value of the specific stiffness k  

(in 2frm1 ) when the cursor position was . The duration of 150 complete 

oscillations has been measured. In my computer this time was t  ( 71 ), so the 

period of a single oscillation was: 

12=kp

sec107= 4 ′′′

 secT 71.0
150
107

==  

By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 04.7981.11071.0 =⋅=  

Applying (3.25) I finally found: 

 ( )
2

1006318541.012
frm

k =  

 

• Experiment 13 

 In Experiment 13, it was possible to find the value of the specific stiffness k  

(in 2frm1 ) when the cursor position was . The duration of 150 complete 

oscillations has been measured. In my computer this time was t  (1 ) so the 

period of a single oscillation was: 

14=kp

sec91= 13 ′′′

 secT 61.0
150
91

==  

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dynamic_Experiment_k12
http://sodaplay.com/constructor/player?&getmodel=Laboratory+Dynamic_Experiment_k14
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By using the time conversion ratio (2.1) the period T becomes: 

 frm
sec
frmsecT 22.6781.11061.0 =⋅=  

Applying (3.25) I finally found: 

 ( )
2

1008735777.014
frm

k =  

 

• Results Analysis 

 Displaying the above results in a diagram in which the horizontal axis represents the 

cursor position  and the vertical axis represents the specific stiffness kp k , we get the curve 

in Figure 3.7: 

 
 

kp  












2

1
frm

k  

2 4 6 8 10 12 14 

0.002 

0.004 

0.006 

0.008 

 
Figure 3.7: specific stiffness trend 

 

First of all, it is possible to see how the curve in Figure 3.7 confirms that there isn’t a direct 

proportionality between k  and . Therefore, also taking into account the result obtained in 

the previous section 3.2, we will try to calculate the ratio between 

kp

k  and  for the above 

results. If there were no errors in the experiments or calculations, then the value for the ratio 

2
kp

2
kpk  can’t be much different than the value obtained in (3.22). The results of this ratio for 

all the above experiments is shown in the following table: 
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Table 3.6: Ratio 2
kpk  for the above experiments 

kp  











2

1
frm

k  











22

1
frmp

k

k
 

6 0.001594502 0.000044292 

8 0.002825819 0.000044153 

10 0.004415343 0.000044153 

12 0.006318541 0.000043879 

14 0.008735777 0.000044570 

 

Since the ratio 2
kpk  is practically constant for all five of the above virtual experiments, we 

have further evidence of the validity of the experimental relation (3.21). Moreover, it is 

possible to see that all the values of the ratio 2
kpk  are practically the same of the value (3.22) 

obtained by means of the static experiments. Since the dynamic experiment gives more 

accurate results, for the stiffness parameter we will take the following medium value: 

 

 











=

2
1000044209.0

frm
k p  (3.26) 

 

The quasi-perfect coincidence between the values of pk  obtained by means of two different 

methods of experiments is proof of the validity of this section of virtual experiments. 

 

3.4 THE FRICTION 

 The friction discussed here is the friction that a body meets while in movement in a fluid. 

Therefore, this kind of friction is related to the viscosity of the medium in which the body is 

moving. This friction has essentially two characteristics: the first is that the force of the 

friction is always proportional to the body’s velocity; the second is that the force of the 

friction is such that its effect is always in opposition of the movement. In order to 

mathematically define this kind of friction we will introduce a new physical quantity that in 
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the following parts of this paper will be called the damping constant9 and that will be 

indicated with the letter f. It is this quantity that we frequently change in our models by 

adjusting the second cursor of Figure 3.1. 

Since velocity isn’t a scalar quantity, but rather a vectorial quantity, when defining velocity it 

is insufficient to specify just its intensity (for example expressed in secm ). It is also 

necessary to specify its direction. Therefore, velocity, like all other vectorial quantities, can be 

represented by vectors10 (see Figure 3.8 a). Force, like velocity and acceleration, is a vectorial 

quantity, so it can also be represented by vectors. Here we are referring to forces from a 

body’s motion in a viscous fluid. So, taking into account what was said earlier about these 

forces, we can represent them by means of a vector which has: intensity equal to the 

velocity’s intensity multiplied by the damping constant f, and the opposite direction as the 

velocity (see Figure 3.8 b). 

 
 

vF ⋅−= f  

v  v  

 a)  b) 
 

Figure 3.8: Relation between velocity and friction force. 

 

Obviously, the force of friction will tend to reduce the motion of a body, so that if anything 

causes motion (for example something like a muscle), the body eventually will stop. 

The main way to determine the damping constant f is to study the free oscillation of a spring-

mass system (like in the dynamic determination of the stiffness) in an environment of viscous 

                                                 
9 In sodalanguage, this parameter is usually simply called friction. Nevertheless, here, in order to avoid any 
confusion between the different kinds of frictions that are encountered in the real world, I have named this 
parameter more appropriately the damping constant. 
10 It is possible to represent a vector by means of an arrow. The arrow’s length will represent in the appropriate 
scale the vector’s intensity; the orientation of the arrow will define the vector’s direction. 
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friction: the damped free vibration. A detailed explanation of this method can be found in 

Appendix B, so for now, we will just discuss the main relations that will be used. 

Leaving a spring-mass system like the one represented in Figure 3.6 free to oscillate in 

presence of viscous friction, and calling  the mass displacement in respect to the quiet 

position at the generic instant t, it is possible to report in a Cartesian diagram the evolution of 

the system. By reporting the mass displacement x in the vertical axis and the time t in the 

horizontal axis, as we will see in Appendix B, will yield a graphic similar to the following 

Figure 3.9. 

( )tx

 
 

ν+nx  nx  

• 

• 

( )tx  

t  

 
Figure 3.9: Effect of viscous damping on a free vibration. 

 

Considering two positive peaks between a number of  complete cycles of oscillations and 

calling  and  their respective values it is possible to calculate the following 

logarithmic parameter

ν

nx ν+nx
11: 

 

 







=δ

ν+n

n

x
x

ln  (3.27) 

 

Using this, it is possible to get the damping constant f value: 

 

                                                 
11 We are considering the natural logarithm; i.e. the inverse function of the exponential function e  .x
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221

2









δ
νπ

+

=
mk

f  (3.28) 

 

In (3.28) we have respectively indicated by k and m the spring’s stiffness and the mass value. 

Therefore, taking into account the position (3.17) about the specific stiffness of a spring, we 

can rewrite the relation (3.28) as: 

 

 mkf
221

2









δ
νπ

+

=  (3.29) 

 

Just as with stiffness, it is possible here to introduce a new parameter that we will call specific 

damping constant f  which doesn’t need the free mass value m: 

 

 





















δ
νπ

+

=

⋅=

221

2 kf

mff

 (3.30) 

 

Thanks to the second formula of (3.30) we will be able to find the sodaconstructor’s law of 

variation with the friction cursor’s position  of the specific damping fp f . 

 

• Experiment 14 

 In Experiment 14, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. The value of the specific damping 

1=fp 6=kp

f  should be independent of the stiffness, but 

in order to verify this independence, we will repeat every experiment (i.e. for a fixed value of 

the cursor position ) with two different values of the specific stiffness. fp

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_f1_k6
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The peak values of the first and 73rd cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n

177
291

72
73

1

73

1

From (3.27) it follows: 

 497173535.0
177
291ln =






=δ  

Moreover, using the relations (3.21) and (3.26) in order to get the value of the specific 

stiffness, it follows: 

 ( )
2

2 1001591524.06000044209.06
frm

k =⋅=  

Finally, taking into account the previous values, from the 2nd formula (3.30) it follows: 

 ( )
frm

f 1000087686.0

497173535.0
7221

001591524.021
2
=







 π⋅⋅

+

=  

 

• Experiment 15 

 In Experiment 15, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

1=fp 8=kp

The peak values of the first and 101st cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n

173
290

100
101

1

101

1

From (3.27) it follows: 
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 516589328.0
173
290ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

2 1002829376.08000044209.08
frm

k =⋅=  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1000087466.0

516589328.0
10021

002829376.021
2
=







 π⋅⋅

+

=  

The results of the last two experiments establish that, neglecting the inevitable small errors, 

the specific damping is independent of the specific stiffness. 

The medium value for the specific damping when  will be: 1=fp

 ( )
frm

f 1000087576.01 =  

 

• Experiment 16 

 In Experiment 16, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

2=fp 6=kp

The peak values of the first and 25th cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n

160
311

24
25

1

25

1

From (3.27) it follows: 

 664619097.0
160
311ln =






=δ  

For the specific stiffness we have the value: 
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 ( )
2

1001591524.06
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1000351653.0

664619097.0
2421

001591524.022
2
=







 π⋅⋅

+

=  

 

• Experiment 17 

 In Experiment 17, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

2=fp 8=kp

The peak values of the first and 33rd cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n
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1
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1

From (3.27) it follows: 

 661598823.0
161
312ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

1002829376.08
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1000350056.0

661598823.0
3221

002829376.022
2
=







 π⋅⋅

+

=  

The medium value for the specific damping when  will be: 2=fp
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 ( )
frm

f 1000350855.02 =  

 

• Experiment 18 

 In Experiment 18, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

3=fp 6=kp

The peak values of the first and 21st cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n
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1
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1

From (3.27) it follows: 

 246248287.1
88
306ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

1001591524.06
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1000791243.0

246248287.1
2021

001591524.023
2
=







 π⋅⋅

+

=  

 

• Experiment 19 

 In Experiment 19, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

3=fp 8=kp

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_f3_k6
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The peak values of the first and 28th cycles of oscillations were measured, and the following 

values were obtained: 

  














==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
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n

n

87
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1
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1

From (3.27) it follows: 

 264191664.1
87
308ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

1002829376.08
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1000792743.0

264191664.1
2721

002829376.023
2
=







 π⋅⋅

+

=  

The medium value for the specific damping when  will be: 3=fp

 ( )
frm

f 1000791993.03 =  

 

• Experiment 20 

 In Experiment 20, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

4=fp 6=kp

The peak values of the first and 18th cycles of oscillations were measured, and the following 

values were obtained: 
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












==
==

=ν
=ν+

=

ν+ pxlxx
pxlxx

n
n

n

n
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1
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1

From (3.27) it follows: 

 86845209.1
46
298ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

1001591524.06
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1001395479.0

86845209.1
1721

001591524.024
2
=







 π⋅⋅

+

=  

 

• Experiment 21 

 In Experiment 21, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

4=fp 8=kp

The peak values of the first and 23rd cycles of oscillations were measured, and the following 

values were obtained: 

  


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




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



==
==
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=ν+

=
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n
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1
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1

From (3.27) it follows: 

 821912507.1
49
303ln =






=δ  

For the specific stiffness we have the value: 
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 ( )
2

1002829376.08
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1001402047.0

821912507.1
2221

002829376.024
2
=







 π⋅⋅

+

=  

The medium value for the specific damping when  will be: 4=fp

 ( )
frm

f 1001398763.04 =  

 

• Experiment 22 

 In Experiment 22, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

5=fp 6=kp

The peak values of the first and 11th cycles of oscillations were measured, and the following 

values were obtained: 
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=ν
=ν+

=
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n

51
289
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1

From (3.27) it follows: 

 734601055.1
51

289ln =





=δ  

For the specific stiffness we have the value: 

 ( )
2

1001591524.06
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 
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 ( )
frm

f 1002201866.0

734601055.1
1021

001591524.025
2
=







 π⋅⋅

+

=  

 

• Experiment 23 

 In Experiment 23, it was possible to find the value of the specific damping f  (expressed 

in frm1 ) when the cursor positions for friction and stiffness were  and  

respectively. 

5=fp 8=kp

The peak values of the first and 14th cycles of oscillations were measured, and the following 

values were obtained: 
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





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=

ν+ pxlxx
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1

From (3.27) it follows: 

 679642171.1
55
295ln =






=δ  

For the specific stiffness we have the value: 

 ( )
2

1002829376.08
frm

k =  

Finally, taking in account the previous values, from (3.30) it follows: 

 ( )
frm

f 1002187142.0

679642171.1
1321

002829376.025
2
=







 π⋅⋅

+

=  

The medium value for the specific damping when  will be: 5=fp

 ( )
frm

f 1002194504.05 =  

 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Experiment_f5_k8


THE  PHYSICS  BEHIND  THE  SODACONSTRUCTOR   -   by Jeckyll       44/123  

• Results Analysis 

 As with the gravity and stiffness experiments, looking at the following Table 3.7, which 

contains the values obtained in the previous virtual experiments, it is possible to establish that 

the specific damping f  is related to the cursor position  by means of a quadratic 

proportionality. 

fp

 
Table 3.7: ratio between the specific damping and the cursor position 

fp  







frm

f 1  







frmp

f

f

1
2

 

1 0.000087576 0.000087576 

2 0.000350855 0.000087714 

3 0.000791993 0.000087999 

4 0.001398763 0.000087423 

5 0.002194504 0.000087780 

 

Just as with the previous physical quantities, it is possible to assume for the specific damping 

the following law: 

 

 ( ) 







⋅=

frm
pfpf fpf

12  (3.31) 

 

in which the value of the damping parameter pf  can be obtained as medium value from the 

values of the ratio 2
fpf  reported in the above Table 3.7. We will assume for the damping 

parameter the following value: 

 

 
frm

f p
1000087698.0=  (3.32) 
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In the following graph are reported both the experimental values of the specific damping and 

the corresponding interpolation value obtained from (3.31) and (3.32). 

 
 

fp









frm

f 1  

1 2 3 4 5 

0.0005 

0.001 

0.0015 

0.002 

 
Figure 3.10: Experimental and interpolating value for the specific damping. 

 

3.5 COLLISIONS 

 The only collisions that exist in the sodaconstructor applet are collisions between masses 

and walls12. There aren’t collisions between masses themselves: these entities, even though 

they appear to have a particular size, are mathematically just points (i.e. couples of Cartesian 

coordinates). For this reason we will avoid speaking in depth about this phenomenon. The 

only thing that we need to understand is the way in which collisions between masses and rigid 

walls occur. 

There are two classic kinds of collisions: elastic and non-elastic. In elastic collisions, the 

intensity of the velocity of a mass immediately before and after its impact on a rigid wall is 

exactly the same. Only the direction of the velocity changes, depending on the angle of 

impact. In non-elastic collisions, the velocity of the mass immediately after the impact drops 

to zero. It is as if the wall were sprinkled with glue: the mass remains attached to the wall. 

In reality, neither of these types of impacts exists. If elastic collisions existed in the real 

world, then, in principle, it would be possible to have a ball that bounces on the ground 

forever. Moreover, in reality, non-elastic collisions always result in at least a small recoil of 

the mass. 

 

                                                 
12 By wall I mean the walls, the ground and the ceiling. 
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ou  
ov  

tv  
tu  

v  u 

 
Figure 3.11: velocities before and after an impact of a mass on a rigid wall. 

 

We will define u and v, respectively, as the velocities of a mass immediately before and after 

its collision with a rigid wall. In reference to the wall’s surface, we will indicate with  and 

 their orthogonal components, and with u  and  their tangential components (see 

Figure 3.11). It is possible to see in Figure 3.11 that the orthogonal components of velocities 

have the opposite direction before and after the collision, while the tangential components of 

velocities have the same direction before and after the collision. What about the values of 

velocity? 

ou

ov t tv

Since, as mentioned earlier, collisions in the real world will never be perfectly elastic or non-

elastic, in order to discuss mathematically exactly what happens during the impact of a mass 

on a rigid wall, we will introduce the coefficients of elastic restitution  and c . Thanks to 

these coefficients, it is possible to write: 

tc o

 

  (3.33) 




⋅=
⋅=

ooo

ttt

ucv
ucv

 

Taking into account that in a realistic collision 0 , we can immediately understand 

that the value of velocity after the impact is always less than the value of velocity before the 

impact. Obviously, we would have a true elastic impact if the coefficients  and  were 

equal to 1, and we would have a true non-elastic impact if the coefficients c  and  were 

equal to 0. 

1, << ot cc

tc

t

oc

oc
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The question now is: what happens in the sodaconstructor applet? It easy to verify that in 

collisions between masses and walls the masses always lose part of their kinetic energy13, so 

in the next part of this section we will investigate the coefficients of elastic restitution of walls 

in the sodaconstructor applet. 

 

• The Coefficient of Elastic Restitution in the Orthogonal Impact 

 Thanks to the virtual experiment on orthogonal impact, it is possible to see that, in 

absence of friction14, the maximum height of the free falling mass after each bounce is always 

less than the previous. Calling u and v respectively the velocity of a mass immediately before 

and after its impact on the ground, in accord with (3.33), the coefficient of elastic restitution 

for the orthogonal impact will be: 

 

 
u
vco =  (3.34) 

 

In order to find the velocity of the mass immediately before the impact on the ground we will 

use the well-known laws for uniformly accelerated motion. Using the height  from which 

the mass begins falling, on the ground the velocity will be: 

1h

 

 12ghu =  (3.35) 

 

What about the velocity v? We already know that the velocity v will be less than the velocity 

u, so, inevitably, the height  that the mass will reach after the first rebound must be less 

than the high . It is possible to calculate the velocity v by simply measuring the height  

reached by the mass after the first rebound: 

2h

1h 2h

 

 22ghv =  (3.36) 

 

                                                 
13 i.e. the physical quantity related to the velocity of masses. 
14 The damping in the previous section. 
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Taking into account (3.34), (3.35) and (3.36) we finally have: 

 

 
1

2

1

2

2

2
h
h

gh

gh
co ==  (3.37) 

 

Measuring the heights  and  in the previous virtual experiment we find h  and 

. Applying the (3.37) we get: 

1h 2h pxl4221 =

pxlh 2382 =

 

 750986713.0
422
238

==oc  

 

What does this mean? It means that in orthogonal impacts with the walls, free masses always 

lose about 25% of their velocity! 

 

• The Coefficient of Elastic Restitution in the Tangential Impact 

 In order to find the value of the coefficient of elastic restitution in tangential impacts, a 

virtual experiment has been devised examining a particular tangential impact. In order to aid 

the explanation of the experiment I have also realized the schematic Figure 3.12. 

In this experiment, a mass with an initial horizontal velocity is free to fall in absence of 

friction. The mass’s motion, in its parabolic falling, can be defined in two components: the 

vertical motion and the horizontal motion. The vertical motion will be a uniformly accelerated 

motion, while the horizontal motion will simply be a uniform motion15. 

2d  1d

2h

1h  

 
Figure 3.12: Scheme of the virtual experience 

                                                 
15 i.e. the horizontal component of velocity is constant. 
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Calling  the height from which the mass starts its parabolic falling, the time it will take for 

the mass to reach the ground is: 

1h

 

 
g
h

t 1
1

2
=  (3.38) 

 

Calling  the horizontal displacement of the mass in this time, the horizontal component of 

the velocity will be: 

1d

 

 
1

1
1

1
2h
gd

t
d

u ==  (3.39) 

 

This is the tangential velocity of the mass before the impact on the ground. 

In order to calculate the coefficient of elastic restitution in the tangential impact now we need 

the horizontal component of the velocity after the impact. It is possible to calculate this 

velocity by considering that after the impact the motion of the mass can again be defined in 

the two parts: the uniformly accelerated vertical motion and the uniform horizontal motion. 

Therefore, calling  the maximum height reached by the mass after the first rebound, the 

time necessary to reach the ground again is: 

2h

 

 
g
h

t 2
2

2
2=  (3.40) 

 

Calling  the horizontal displacement of the mass during this time, the horizontal 

component of the velocity after the impact will be: 

2d

 

 
2

2

2

2
22 h

gd
t
d

v ==  (3.41) 
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In accord with the first formula of (3.33), and taking into account the velocities (3.39) and 

(3.41), the coefficient of elastic restitution for the tangential impact will be: 

 

 
2

1

1

2
2 h

h
d

d
u
vct ==  (3.42) 

 

From the virtual experiment mentioned earlier, it is possible to measure the following 

distances: 

 

  











=
=
=
=

pxlh
pxlh

pxld
pxld

238
422
57
377

2

1

2

1

 

From (3.42) follows: 

 

 100663322.0
238
422

3772
57

=
⋅

=tc  

 

What does this mean? This means that in tangential impacts with the walls, free masses 

always lose about 90% of their velocity! This fact is extremely enlightening (at least for me). 

Indeed, it is the low value of this coefficient that allows our models to walk. In the applet, 

there isn’t friction on the ground in the real physical meaning of the word. If the value of this 

coefficient were greater, our models would walk with much difficulty. If this coefficient were 

equal to 1, our models would not be able to walk at all. 

 

3.6 FINAL RESULTS 

 At the end of this long chapter I will simply summarize in a concise way the main results 

obtained by means of the previous virtual experiments. 

We have defined with ,  and  the position of the cursors of Figure 3.1. These 

parameters can assume values from 0 to 107. 

gp fp kp
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The law of variation of the acceleration constant g with the cursor’s position  is: gp

 

 ( )











⋅=

2
2

frm
pxlpgpg gpg  (3.43) 

 

in which the value of the gravity parameter  experimentally obtained is: pg

 

 











⋅= −

2
41050169.3

frm
pxlg p  (3.44) 

 

The law of variation of the spring’s stiffness k with the cursor’s position  is: kp

 

 
( ) ( )

( )


















⋅=

⋅=

2
2 1

frm
pkpk

mpkpk

kpk

kk

 (3.45) 

 

in which the value of the stiffness parameter pk  experimentally obtained is: 

 

 











⋅= −

2
5 1104209.4

frm
k p  (3.46) 

 

The law of variation of the damping f with the cursor’s position  is: fp

 

 
( ) ( )
( )
















⋅=

⋅=

frm
pfpf

mpfpf

fpf

ff

12  (3.47) 

 

in which the value of the damping parameter pf  experimentally obtained is: 
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frm

f p
1107698.8 5−⋅=  (3.48) 

 

The components of the velocity before and after an impact between masses and walls are 

related by means of the equation: 

 

  (3.49) 




⋅=
⋅=

ooo

ttt

ucv
ucv

 

in which the values of the coefficients of elastic restitution experimentally obtained are: 

 

  (3.50) 




≅
≅

75.0
10.0

o

t

c
c

 

All of the above constants are certainly affected by inevitable errors in the measurements, so I 

would intuitively rely on just the first two significant digits. It would have been more 

thorough to calculate the errors using the well-known statistical techniques, but since this is 

all just play, I decided not to. 
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4. CINEMATIC 

 This chapter will discuss the main cinematic quantities16 that we will encounter in the 

following chapter of this paper. These cinematic quantities are the position vector, the 

velocity, and the acceleration. All are related to the masses on the screen17. 

 

4.1 SYSTEM OF COORDINATES 

 The first thing we need is a system of coordinates. We will use a pair18 of orthogonal 

Cartesian’s axes with the origin fixed in the lower left corner of the sodaconstructor window. 

The horizontal axis will be the x-axis and its direction will be from the left to the right. The 

vertical axis will be the y-axis and its direction will be from the bottom to the top (see 

Figure 4.1). Thanks to this system of Cartesian’s axes it will be possible to define the position 

of any free mass on the screen with a pair of Cartesian coordinates. 

 

y

x  

im  ix

iy  

O  
Figure 4.1: System of reference adopted in the rest of the paper. 

 

                                                 
16 The quantities related to the motion of masses. 
17 From now on we will talk exclusively about elements of the sodaconstructor applet. 
18 Only two are needed because, as we know, the sodaconstructor is only a two-dimensional application of the 
main laws of mechanics. 
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4.2 THE POSITION VECTOR 

 If N is the integer number of masses on the screen, each mass will be characterized by an 

integer index included in the interval . So we will have: [ N,1 ]

)

 

Ni mmmmm ,,,,,, 321 LL  

 

When we talk about a generic mass on the screen its index will be simply represented by the 

letter i. So, very often, we will talk about the generic mass . im

Each mass on the screen will be located by a pair of Cartesian coordinates. In order to avoid 

any confusion, each pair of coordinates will be characterized by the same index of the mass to 

which they refer. So the generic mass  will be located on the screen by the coordinates 

 (see Fig. 4.1). 

im

( Niyx ii ,,2,1, K=

 
 

 x 

 y 

r 

 i 

 j 

 x 

 y 

 
Figure 4.2: The position vector for the Cartesian point x, y. 

 

In modern vector analysis a generic point in the space is located by a position vector. The 

Cartesian point  is given by the vector joining it to the origin of the coordinates (see 

Fig 4.2). This vector can be written as: 

( yx, )

 

  (4.1) jir yx +=
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where r is the position vector of the Cartesian point ( , and i and j are the unit vectors)

)

yx, 19 in 

the x and y directions. Therefore the position vector for the generic mass  will be 

represented by: 

im

 

  (4.2) jir iii yx +=

 

4.3 THE VELOCITY 

 The examination of the movement of a mass requires two other cinematic quantities in 

addition to the position vector. These are the velocity and the acceleration. In order to define 

these quantities we will introduce the trajectory of a mass. This is the path obtained by joining 

in sequence all points in space crossed by the mass in its motion. 

The trajectory could be represented by means of the vectorial function of time represented by 

the vector position r . This vectorial function of time locates the mass position at the 

generic instant of time t. Obviously, if the mass isn’t still, its vector position will change with 

the time. 

( )t

Let us now consider a generic trajectory of a mass in order to investigate its motion between 

two instants of time  and t . The position vectors that locate the mass position in the two 

previous instants of time will be r  and r  respectively. Therefore the displacement 

of the mass in the interval of time  will be (see Fig. 4.3): 

t t∆+

( )t
t∆

( tt ∆+

 

  (4.3) ( ) ( ) ( )tttt rrr −∆+=∆

 

Taking into account the classical definition of velocity we could define the mean velocity in 

the finite interval of time  by means of the relation: t∆

 

 ( ) ( ) ( ) ( )
t

ttt
t
tt

∆
−∆+

=
∆
∆

=
rrrv  (4.4) 

 

                                                 
19 The vectorial quantities will always be indicated by bold letters. 
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( )tr  

( )tt ∆+r

( )tr∆  

 
Figure 4.3: Displacement of a point in the interval of time ∆t. 

 

If we would the instantaneous velocity of the mass at the time t we should consider the limit 

of the mean velocity v  as ∆ 0→t 20. Therefore the instantaneous velocity at time t will be 

defined as: 

 

 ( ) ( )tt
t

vv
0

lim
→∆

=  (4.5) 

 

Remembering the definition of the position vector r we can write: 

 

  (4.6) 
( ) ( ) ( )
( ) ( ) (




∆++∆+=∆+
+=

jir
jir

ttyttxtt
tytxt

)
 

so that the mean velocity (4.4) can be written as: 

 

 ( ) ( ) ( ) ( ) ( ) jiv
t

tytty
t

txttxt
∆

−∆+
+

∆
−∆+

=  (4.7) 

 

Substituting (4.7) in (4.5) we get: 

 

 ( ) ( ) ( ) ( ) ( ) ( )
jivv

t
tytty

t
txttxtt

ttt ∆
−∆+

+
∆

−∆+
==

→∆→∆→∆ 000
limlimlim  (4.8) 

 

                                                 
20 We will read this to mean: “∆t approaches zero”. 
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Taking into account the definition of the derivative of a function we get the following 

expression of velocity: 

 

 ( ) ( ) ( )
jiv

td
tyd

td
txd

t +=  (4.9) 

 

or, better: 

 

  (4.10) ( ) ( ) ( ) jiv tytxt && +=

 

This is exactly the expression of the velocity that we will use in the formulation of the 

equations of motion for a model. 

Obviously the velocity of the generic mass  is: im

 

  (4.11) ( ) ( ) ( ) jiv tytxt iii && +=

 

4.4 THE ACCELERATION 

 In addition to the velocity, it is possible to define the acceleration through the limit as 

 of the mean acceleration 0→∆t ( )ta : 

 

 ( ) ( ) ( ) ( ) ( )
t

t
t
ttt

ttt ∆
−∆+

=
∆

∆
==

→∆→∆→∆

vvvaa ttlimlimlim
000

 (4.12) 

 

Taking into account the expression (4.10) for the velocity, from (4.12) follows: 

 

 ( ) ( ) ( ) ( ) ( ) jia
t

tyy
t

txxt
tt ∆

−∆+
+

∆
−∆+

=
→∆→∆

&&&& ttlimttlim
00

 (4.13) 

 

that is: 
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  (4.14) ( ) ( ) ( ) jia tytxt &&&& +=

 

This is exactly the expression of the acceleration that we will use in the formulation of the 

equations of motion for a model. 

For the generic mass  we also have: im

 

  (4.15) ( ) ( ) ( ) jia tytxt iii &&&& +=

 

5. TOPOLOGY OF A MODEL 

 The first question about this chapter could be: What exactly is a model? Obviously we 

need a definition. For this reason from now when we talk about a model we mean a system of 

free masses21 themselves connected in various way by means of muscles and springs. And 

what about the topology? The topology of a model is simply the exact way in which the 

masses of a model are connected. 

In order to define exactly the topology of a model let us consider a model made with N free 

masses. We will indicate with the integer number  the number of masses that are 

connected with the generic free mass  so that mass  is connected with  free masses, 

mass  connected with  masses, and so on. Obviously for a model made with N free 

masses we will have N integer numbers . These parameters are very important even if they 

don’t say anything about the exact connections between the masses. The only thing that we 

can determine with these parameters is that the mass  is connected with  other free 

masses; nothing more. We still don’t know exactly which masses are connected to the mass 

. For this reason we will introduce the topological index . 

iN

1m

im

im

N

1N

N

2m 2N

i

i

im ijε

The topological index  represents the index of the j-th mass connected with mass . 

Obviously the index i and j will be such as: 

ijε im

 

                                                 
21 Fixed masses are not discussed in this article. 
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  (5.1) 




=
=

iNj
Ni

,,2,1
,,3,2,1

K

K

 

In order to well understand the exact definition of the topological index  let us consider the 

following example. In the model of Figure 5.1 we have 8 free masses. 

ijε

 

 
Figure 5.1: Example of a model 

 

It is trivial to see that the mass  is connected to 3 other masses, that mass  is connected 

to 3 other masses, that mass  is connected to 4 other masses, and so on. By using the 

definition of the parameter  we can simply write: 

1m

3m

2m

iN

 

  

.3;3
;4;2
;6;4
;3;3

87

65

43

21

==
==
==
==

NN
NN
NN
NN

 

But how are these masses connected? It is also trivial to see that the mass m  is connected to 

masses , m  and , mass  to masses ,  and m , and so on. Well, the values of 

the topological index tell us exactly the way in which the masses are connected. In the present 

case the values of the topological index are: 

1

2m 4 6m 2m 1m 3m 4
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.7;6;3
;8;6;4

;8;7;4;1
;4;3

;7;6;5;3;2;1
;8;5;4;2

;4;3;1
;6;4;2

838281

737271

64636261

5251

464544434241

34333231

232221

131211

=ε=ε=ε
=ε=ε=ε

=ε=ε=ε=ε
=ε=ε

=ε=ε=ε=ε=ε=ε
=ε=ε=ε=ε

=ε=ε=ε
=ε=ε=ε

 

The topological index will be very important when we need to sum the elastic forces acting on 

a free mass in order to formulate the equations of motion for a model. 
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6. FORCES ANALYSIS 

 The movement of a mass is strictly related to the forces that are applied to the mass. For 

this reason, in this chapter we will talk about the different kinds of forces that a mass might 

encounter in its motion. There are essentially three such forces: the gravity forces, the 

damping forces (the friction), and the elastic forces. 

 

6.1 THE GRAVITY FORCES 

 Regarding the gravity forces, to tell the truth, there isn’t much to say. Each free mass will 

be subjected to a weight force that is proportional to the mass value by means of the constant 

g. In the applet, all free masses are the same, so each mass will be subjected to the force: 

 

  (6.1) Nigmgmi
g
i ,,2,1 K=−=−= jjF

 

where the symbol m has been assumed for the common value of all the masses. Obviously, in 

order to express the weight force, we need the unit vector j of the y-axis. Finally the minus 

sign in (6.1) means that gravity pushes the masses down. When the gravity reverse option in 

the applet is activated the expression (6.1) simply becomes: 

 

  (6.2) Nigmgmi
g
i ,,2,1 K=== jjF

 

6.2 THE DAMPING FORCES 

 We already talked about the damping forces when we studied the free damped vibrations 

of a spring-mass system in order to calculate experimentally the damping constant of the 

applet. We have already said that a mass in motion in a viscous fluid with velocity v is 

subjected to a force F equal to (see Fig. 3.8): 

 

  (6.3) vF f−=

 

Now, thanks to what we have already said in sections 3.4 and 4.3, we can write a more 

appropriate expression for the damping force acting on a generic mass m : i
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  (6.4) ( ) ( ) Nitft i
f

i ,,2,1 K=−= vF

 

from which, thanks to the expression of velocity (4.11), follows: 

 

  (6.5) ( ) ( ) ( )[ ] Nitytxft ii
f

i ,,2,1 K&& =+−= jiF

 

Finally, taking into account the first expression of (3.47), we will write: 

 

 ( ) ( ) ( )[ ] Nitytxfmt ii
f

i ,,2,1 K&& =+⋅⋅−= jiF  (6.6) 

 

in which has been introduced the specific damping constant f . 

 

6.3 THE ELASTIC FORCES 

 The discussion of the elastic forces acting on a specific mass of a model is a little bit 

more complex, essentially for two reasons. The first is that each mass of a model is generally 

connected to more masses, so that often many elastic forces act upon a single mass. The 

second is that the elastic forces acting on a mass can come from springs or muscles. So, in 

order to find the exact expression for the resultant of many elastic forces acting on a single 

generic mass, we must first study springs and muscles. We will do this in the next chapter, so 

here we will talk about the elastic forces in general. 

We have already talked about the elastic forces of a spring in section 3.2. In that section we 

said that a spring of original length  extended until the length l ( l ) needs a traction 

force of intensity F proportional to the extension ∆  by means of the stiffness constant 

k (see Fig. 3.5): 

0l 0l>

0lll −=

 

  (6.7) lkF ∆⋅=
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This is valid, obviously, from the spring’s point of view. But now we are investigating the 

forces acting on the free masses by means of springs. These forces, thanks to Newton’s third 

law22, are equal in intensity to the forces acting on the springs but with opposite direction. 

Therefore, when a spring is extended, the forces act on the free masses at its extremities 

pushing them toward each other. Instead, when a spring is compressed, the forces act on the 

free masses at its extremities pushing them away from each other (see Fig. 6.1). 

 

0l  

01 ll >  

02 ll <  

1F  1F  1F 1F  

2F  2F  2F  2F  
 

Figure 6.1: Forces acting on the masses at the end of a spring. 

 

7. SPRINGS AND MUSCLES 

 In order to get the exact expression for the resultant of elastic forces acting on a generic 

mass , we must first investigate springs and muscles. Without any delay, let us begin these 

investigations. 

im

 

7.1 THE SPRINGS 

 Let us consider a spring that connects two free masses,  and , in a hypothetical 

model. We will indicate with l  the length at rest of the spring that connects masses i and j. 

This length is the length assigned to the spring when the two masses are originally connected 

im jm

r
ij

                                                 
22 The principle of action and reaction. 
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in the applet’s construct mode. This value will never change during the simulation, and is 

important in order to evaluate the elastic forces acting on the masses m  and . i jm

tlij

We will indicate with  the effective length of a spring during the simulation. Obviously 

this length will change continuously so it will be a function of time. Its value is determined by 

the coordinates of its extremities; i.e. its value depends on the coordinates of the free masses 

 and . Therefore, applying the well-known Theorem of Pythagoras we have (see 

Fig. 7.1): 

( )tlij

im jm

 

 ( ) ( ) ( )[ ] ( ) ( )[{ ] }2
1

22 tytytxtxtl jijiij −+−=  (7.1) 

 
 

jm  

im  

jx  

jy  

( )tlij  

ix  

iy  

 x 

 y 

 
Figure 7.1: Length of a spring. 

 

The stretch of the spring ij in the generic instant of time t is: 

 

  (7.2) ( ) ( ) r
ijijij ltltl −=∆

 

Therefore, when , the spring is in traction, while when , the spring is in 

compression. As we discussed in the previous chapter, when the spring ij is in traction, the 

elastic forces acting on masses i and j will push them together, and when the spring ij is in 

compression, the elastic forces acting on masses i and j will push them apart. The direction of 

these forces, whatever the sign of  may be, will correspond with the direction of the 

( ) 0>∆ tlij ( ) 0<∆

( )tlij∆
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straight line on which lies the spring ij while the intensity of the two forces will be 

proportional to the stretch  by means of the well-known stiffness k. ( )tlij∆

( )tlij∆

Let us now concentrate our attention on the elastic force acting on the mass . We will 

represent this force with the symbol  (elastic force acting on the mass i by means of the 

spring that connects the masses i and j). Obviously, . 

im

( )te
ijF

( ) ( )tt e
ij

e
ji FF −=

Regarding the intensity of these two forces, we can immediately write that: 

 

 ( ) ( )  (7.3) ktt e
ji

e
ij ⋅== FF

 

in which we have indicated with the symbol F  the intensity of the force F, while we have 

indicated with the symbol ( )tlij∆  the absolute value of the stretch . ( )tlij∆

In order to fully characterize the elastic force , we need to know its direction. As we 

have said before, the direction of these forces corresponds with the direction of the straight 

line on which lies the spring ij, so the direction of the force F  will be the same or 

opposite the direction of the vector: 

( )te
ijF

( )te
ij

 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]jirrr tytytxtxttt ijijijij −+−=−=  (7.4) 

 

This is the vector that joins the extremity of vector i to the extremity of the vector j (see 

Fig. 7.2). Obviously the length of this vector is the same as the length : ( )tlij

 

 ( ) ( )tlt ijij =r  (7.5) 

 

so that the unit vector of the direction ij is: 
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 ( )
( )
( )

( ) ( )
( )

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]22

ˆ
tytytxtx

tytytxtx
tl

tt
tl
t

t
ijij

ijij

ij

ij

ij

ij
ij

−+−

−+−
=

−
==

jirrr
r  (7.6) 

 
 

( )tir( )tjr  

( )tijr

 x 

 y 

 
Figure 7.2: The vector r  ( )tij

 

The unit vector r , like the vector , is directed from i to j. This is the same as the 

direction of the elastic force F  when the stretch  is positive. Therefore we can 

write a general expression of the force  simply by multiplying  with : 

( )tijˆ ( )tijr

( )te
ijF

( )te
ij ( )tlij∆

( )tlk ij∆⋅ ( )tijr̂

 

  (7.7) ( ) ( ) ( )ttlkt ijij
e
ij rF ˆ∆⋅=

 

This expression is valid in general. Indeed, if the stretch is positive, then as we have stated 

before, the force acting on the mass i will directed from i to j like the unit vector r , while, 

if the stretch is negative, the force acting on the mass i will be directed from j to i, like the 

direction of the vector obtained by multiplying a negative quantity ( ) with the unit 

vector r . 

( )tijˆ

( )tlij∆

( )tijˆ

Using the previous expressions (7.1), (7.2) and (7.6), from (7.7) we get a more explicit 

expression for the elastic force F : ( )te
ij

 

 ( ) ( )[ ] ( )
( )tl
t

ltlkt
ij

ijr
ijij

e
ij

r
F −=  (7.8) 
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where: 

 

 
( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )[ ] ( ) ( )[ ]









−+−=

−+−=

jir tytytxtxt

tytytxtxtl

ijijij

ijijij
22

 (7.9) 

 

7.2 THE MUSCLES 

 We all know what a spring is. We have all seen real springs in our own lives. But what 

exactly is a muscle? In the sodaconstructor, muscles are simply springs with the length at rest 

 changing in time with harmonic law. Certainly, this sort of object doesn’t exist in the real 

world. In reality a spring’s length at rest doesn’t change over time. Muscles are simply 

abstract objects invented by Ed Burton (I suppose) in order to give energy to our models. You 

could say that the sodaconstructor muscle is a simplified version of the human muscle. 

r
ijl

In order to define mathematically these new entities, let us consider two free masses  and 

 connected by a muscle. As stated before, the length at rest of the muscle is: 

im

jm

 

  (7.10) ( ) ([ ijijij
r
ij tltl ϕ+ω⋅β⋅α+= sin10 )]

 

where a lot of new parameters have been introduced. The parameters in (7.10) that have the 

index ij are parameters closely related to the specific muscle that joins the masses i and j. 

These parameters ( ) can be different for each muscle of a model. The other 

parameters (β ) are valid for all the muscles of a model. 

ijijijl ϕα ,,0

ω,

The first and most intuitive parameter that has been introduced in (7.10) is the length . This 

length is the length assigned to the muscle when the two masses are originally connected in 

the applet’s construct mode. If this were a spring and not a muscle, the length l  would 

simply be the length at rest . 

0
ijl

0
ij

r
ijl
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In order to explain all the other new parameters in (7.10) we will refer to the 

sodaconstructor’s muscle control panel, as shown in the following Figure 7.3: 

 

 

ω
ijϕ  

ijα

β

rad
4
π

rad
2
π

rad
4

3π  

 
Figure 7.3: muscle control panel. 

 

Let us go in order: 

•  is the parameter that determines the speed of the oscillation for all the muscles in a 

model. Its value is expressed in 

ω

frmrad  and it can be changed with the cursor shown in 

Figure 7.3. When this cursor is placed on the top, as everyone knows, the value of the 

parameter  is zero. We could define  in the following various ways: pulsation, 

frequency, circular frequency, etc. 

ω ω

•  is the parameter of phase for the specific muscle ij. By adjusting this parameter we set 

the delay before muscle ij reaches its maximum amplitude. In Figure 7.3 it is possible to 

see the value of the phase ϕ  in the muscles control panel. When the phase cursor is on 

the top the phase is equal to . The intermediate positions correspond 

respectively the values of 

ijϕ

ij

radij 0=ϕ

rad4π , rad2π  and rad4π3 . Thanks to this parameter, the 

model constructors are able to synchronize harmoniously the movement of their precious 

and spectacular models ;) 



THE  PHYSICS  BEHIND  THE  SODACONSTRUCTOR   -   by Jeckyll       69/123  

•  is the parameter that fixes the wave amplitude. This parameter can assume any value in 

the interval [ . When the sinusoidal wave is simply a straight line, the value of the 

parameter  is 0. When the wave has the maximum amplitude β  is equal to 1 (see 

Fig. 7.3). Obviously, the value of  is the same for all the muscles of a model. 

β

]1,0

β

β

•  is the parameter that determines the benefit of the wave amplitude β  for the muscle ij 

(its relative amplitude). Just like the amplitude β ,  can assume all the values in the 

interval [ . α  is equal to 0 when the position of the cursor (see Fig. 7.3) is completely 

on the left, while  is equal to 1 when the cursor is completely on the right. 

ijα

ijα

]1,0 ij

α ij

In order to better understand these parameters let us consider a few examples. The first 

example that I want to take into consideration is the case of a free muscle with α . In 

this case, (7.10) becomes: 

1=β=ij

 

  (7.11) ( ) ([ ijij
r
ij tltl ϕ+ω+= sin10 )]

 

which shows that the length of the free muscle will change periodically from 0 to . 02 ijl

The second example that I want to take into consideration is the case of a muscle with 

. In this case, no matter what the value of the amplitude, from (7.11) simply follows: 0=α ij

 

  (7.12) ( ) 0
ij

r
ij ltl =

 

In this case the muscle becomes a spring. For this reason, it is absolutely valid to think of all 

springs as muscles with the parameter α . 0=ij

What about the forces acting on the masses at the extremities of a muscle? The expression of 

these forces is exactly the same as it is with the elastic forces due to springs. The only 

difference is in the expression of the length l : for springs this length is constant, while for 

muscles this length changes over time with the law (7.10). 

r
ij
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Therefore, the most general expression of the elastic force acting on a generic mass i by 

means of a muscle or spring that connects mass i to mass j is: 

 

 ( ) ( ) ( )[ ] ( )
( )tl
t

tltlkt
ij

ijr
ijij

e
ij

r
F −=  (7.13) 

 

in which: 

 

 

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[
( ) ( ) ( )[ ] ( ) ( )[ ]















−+−=

ϕ+ω⋅β⋅α+=

−+−=

jir tytytxtxt

tltl

tytytxtxtl

ijijij

ijijij
r
ij

ijijij

sin10

22

]  (7.14) 

 

7.3 RESULTANT OF THE ELASTIC FORCES ON A FREE MASS 

 At this point we are able to define the exact expression of the resultant of the elastic 

forces acting on a free mass of a model. 

Remembering the definitions of the integer parameters  and the topological index  we 

can write the resultant of the elastic forces acting on the generic mass  by means of the 

following relation: 

iN ijε

im

 

 ( ) ( ) ( ) ( )
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( )∑∑

= ε

ε

εε
=

ε 

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ij
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j i

ir
ii

N

j

e
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e
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t
tltlktt

11

r
FF  (7.15) 

 

In order to formulate the equations of motion of a model, it will be convenient to write (7.15) 

taking into account the expression (3.17) of the stiffness k: 

 

 ( ) ( ) ( ) ( )
( )
( )∑∑

= ε

ε

εε
=

ε 

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 −⋅==
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ij
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FF  (7.16) 
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There is one last question about the mathematical expression of elastic forces. What happens 

when two masses are in same place on the screen? This event, even if it isn’t realistic, 

physically speaking, could happen23. In this case the expression (7.8) becomes indeterminate 

(mathematically we have met an indetermination of the kind 00 ). The soda algorithm must 

have some control in order to avoid an error like the division by zero error. I’ve verified that 

this control effectively exists through a demonstration in the following Example in which two 

masses are perfectly overlapped. The applet simply fails to take into consideration the elastic 

forces between masses that are perfectly overlapped. 

                                                 
23 In linear motors, for example, this happens systematically. 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Control_about_indeterminations
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8 EQUATIONS OF THE MOTION OF A MODEL 

 We now have all the expressions of the forces that could act on a generic mass . These 

forces are: 

im

• The gravity force: 

 

  (8.1) jF gmg
i −=

 

• The damping force: 

 

 ( ) ( ) ( )[ jiF tytxfmt ii
f

i && +⋅⋅−= ]  (8.2) 

 

• The elastic force: 
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Therefore their resultant  will be: ( )tiF
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Combining the two directional components x and y, the resultant  can be written as: ( )tiF
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where the expressions of the components  and , according to (8.1,2,3,4), can be 

written as: 

( )tF x
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In order to get the system of differential equations that governs the motion of a model, we will 

apply Newton’s second law to all the N masses of the model. Therefore, we will have: 
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or, taking into account the expressions (4.15) and (8.5), also: 
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Assembling together the components of x and y of all these equations and taking into account 

expressions (8.6) of the components  and  we will get: ( )tF x
i ( )tF y
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 (8.9) 

 

At this point it is possible to definitively solve the mystery of the value of the mass m. As 

stated in Chapter 2, it isn’t necessary to assume any specific value for the mass m, consistent 

to all the free masses in the applet. Indeed, whatever the value of m might be, in (8.9) it can be 

seen that the constant m can be simplified everywhere. Obviously this is possible only 

because all masses in the applet are the same24. 

                                                 
24 i.e. all the masses have the same inertial properties. 
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The equations (8.9) can more conveniently be written as: 
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in which the known scalar functions  and  have the expressions: x
if y
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The equations (8.10) represent a system of  non-linearN2 25 differential equations of second 

order in  unknown functions represented by the coordinates of the model’s free masses 

. Thanks to the numerical resolution

N2

( ) [it( ) ],,2,1, Nytx ii K= 26 of this system of equations 

we can determine the movement of our model over time. 

 

9. NUMERICAL RESOLUTION OF THE EQUATIONS OF MOTION 

 In the past, even though many problems were already formulated in terms of differential 

equations, their exact resolutions27 weren’t always obtainable. Only in a few cases was it 

possible to obtain an exact solution; in all the remaining cases almost nothing could be done. 

Sometimes it was possible to use approximate methods of resolution, but in these methods a 

lot of calculus had to be done. Today, thanks to our beloved computers, this isn’t a problem 

anymore. Today we have at our disposal a large amount of numerical techniques that allow us 

to get a resolution of any differential problem with the accuracy wanted. Finding a solution to 

a problem like those defined in equations (8.10) and (8.11) only thirtyfive years ago would 

                                                 
25 The functions  and  are non-linear functions. x

if
y

if
26 Unfortunately, the resolution (integration) of the equations (8.11) is possible only in a numerical way.  
27 i.e. the resolution in terms of well-known mathematical functions. 
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have required the computers of NASA. Today, there are a variety of pocket videogames that 

are able to solve problems more complex than ours. Today it might also be accurate that the 

true power of a nation is in the capacity of her computers to go fast (capacity expressed in 

billions of calculus per second). 

Here I will show you the simplest numerical technique that we need in order to solve the 

equations of motion (8.10). This numerical technique, usually called the finite differences, as 

well as all the other more sophisticated numerical techniques, will transform the system of 

differential equations (8.10) into a system of algebraic equations that, step by step, allow us to 

get the positions of the masses of a model over time. 

In order to pursue this objective we absolutely need some approximated expressions for the 

scalar velocities ,  and the scalar accelerations , . Therefore we will start 

looking for an approximated expression for the first derivative of a generic real function 

. We know that the exact expression of the first derivative of a function  is defined 

by the limit: 

( )txi& ( )tyi& ( )txi&& ( )tyi&&

( )xf ( )xf
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Looking at this definition it is immediately possible to understand that an approximate value 

for the first derivative  could be calculated choosing a very small value of the finite 

interval . Therefore the expression: 
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will be more accurate as gets smaller, so that we will use this expression in order to 

approximate the first derivative of a function. 

x∆

What about the second derivative ? By definition we can write: ( )xf ′′
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so that, just like the first derivative, the approximate expression for the second derivative will 

be: 
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This expression isn’t particularly useful because it contains the first derivative of the function 

. Therefore, since from expression (9.2) follows: ( )xf
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substituting (9.2) and (9.5) in the approximate expression of the second derivative (9.4) we 

get: 
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In order to evaluate the approximate expressions of the first and second derivatives of the 

unknown function of our problem we will use respectively the relations (9.2) and (9.6). We 

will have: 
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These expressions will be more accurate as the finite interval of time ∆  is smaller. t
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Using the approximate expression (9.7) in the equations of motion (8.10) we get: 

 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

Ni
tf

t
tytty

f
t

tyttytty

tf
t

txttx
f

t
txttxttx

y
i

iiiii

x
i

iiiii

,,2,122

22

2

2
K=










=
∆

−∆+
+

∆

+∆+−∆+

=
∆

−∆+
+

∆

+∆+−∆+

(9.8) 

 

from which follows: 
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These expressions are very important in finding the approximate solutions of the equations 

(8.10) because they allow us to find the position of all N masses of a model in the instant of 

time , while previously we knew the position of all N masses in the instants of time 

 and t. This means that if we know the positions and velocities of all the masses in a 

particular instant of time, using the relations (9.9) iteratively we will be able to get the 

evolution of the position of all the masses over time; i.e. the movement of our model. The 

positions and the velocities of all the masses in a particular starting instant are called initial 

conditions, and they are fundamental in order to solve numerically our differential equations. 

tt ∆+ 2

tt ∆+

Above I said that using the equations (9.9) iteratively it is possible to calculate the positions 

of the masses of a model over time. But what exactly does it mean to use the equations 

iteratively? In order to understand this let us introduce the following position: 
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If we choose as the initial instant the generic time t , from the first of (9.10) follows: k
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  (9.11) 
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from which it is possible to see that the three instants of time t ,  and  are in a series 

like the three instants of time t,  and t  from (9.9). Therefore, these relations can 

also be written as: 

k 1+kt 2+kt
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or better: 
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from which it is possible to understand how, by simply knowing the positions of all the 

masses of a model in the two instants of time  and t , it is possible to get the positions of 

the same masses in the next instant of time . Since the instant of time  is totally 

arbitrary, it is also possible to understand how the relations (9.13) are absolutely general. 

Therefore these relations can be used iteratively in order to find how the positions of the 

masses of a model change over time. Indeed, if we know, for example, the positions of the 

free masses of a model in the instants of time  and , thanks to (9.13) it is possible to find 

the position of the masses in the instant of time . Then, applying (9.13) once again, it will 

be possible to find the position of all the masses at the instant of time t . In this way, we can 

find the positions of all the masses at the instants of time t , t , t  and so on indefinitely. 
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Before I close this chapter I will say one more thing. The expressions (9.13) might appear to 

be very simple and fast in application, but it is important to remember that the terms  and x
ikf
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y
ikf  must be recalculated at every iteration. Their expressions can be obtained by simply 

going back to see all the positions previously assumed. These expressions are: 
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where: 
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It is now perfectly clear that the main computational charge is due to the determination of 

these parameters at each cycle of iteration of (9.13). 

What about the interval of time ? The choice of this value (usually a small fraction of 

frame) must be done with much caution. Indeed, if ∆  is very small, the simulation will be 

pretty slow. However, if ∆  is big, the solution that we get by applying the above equations 

will be completely wrong. It is also important to say that the choice of  also depends on the 

numerical technique chosen. Here I’ve talked about the finite differences method, which is the 

simplest numerical technique but also the least accurate. In the sodaconstructor applet, the 

numerical technique used is Euler’s Method. I’ll talk about this and other numerical 

techniques in Appendix C. 
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10. THE STATIC AND QUASI-STATIC SIMPLIFIED PROBLEM 

 The previous equations of motions (8.9) were obtained simply by applying Newton’s 

second law to each mass of a model. The terms strictly related to the motion of free masses 

arise in these equations. These terms are the damping forces and the inertial forces28. These 

terms are respectively related to the velocities and the accelerations of the free masses. In 

many cases, however, the movement of the model could be so slow that these forces become 

themselves negligible. In these cases the only forces acting on a model are the elastic forces29. 

To study the movement of the model in these situations, it is only necessary to consider the 

elastic forces, like in the static case. Therefore, when we study a model without taking into 

account inertial forces or damping forces, we will say that we are studying a quasi-static 

model. 

In this chapter, we will be able to solve many practical problems simply by not taking these 

forces into account. 

 

10.1 SYSTEM OF EQUATIONS 

 By ignoring the damping and inertial forces, from the equations (8.9) follows this system 

of equations: 
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 (10.1) 

 

in which the time hasn’t even been taken into account. This is because even if we have 

muscles in the model, the solution of the problem would be determined instant after instant. 

Therefore, in principle, there is no difference between the static case and the quasi-static case. 

In any case, we will only consider springs. 

The system of equations (10.1) can be more conveniently written as: 

 
                                                 
28 in the sense of d’Alembert’s principle. 
29 and, eventually, the gravity forces. 
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where: 
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In this system of equations the data are the lengths at rest of all the springs in the model, while 

the unknown quantities are the coordinates of the free masses in the equilibrium 

configuration. 

Before we examine some applications of quasi-static problems, it is important to explain a 

few things about the system of equations (10.2). First, this system of equations isn’t linear. 

This fact could be a big problem, because there is no general way to solve non-linear systems 

of equations. Some solutions can be obtained in particular cases, but in all the remaining cases 

the only way to solve the system of equations is to use numerical algorithms. The simplest 

numerical algorithm for the resolution of non-linear systems of equations is the generalization 

for more than one non-linear equation of Newton’s algorithm30. Initially, I planned to add a 

short paragraph about this method, but for now I have changed my mind. The main reason is 

that we will not really need to solve the (10.2) system of equations in order to study practical 

problems in the ordinary life of a typical sodaconstructorman/woman. As we will see, it is 

possible to solve static and quasi-static problems without even considering this system of 

equations. Therefore, if anyone would like to learn about these numerical techniques, feel free 

to contact me and I will be happy to give you some explanation and/or reference. 

The second thing I would like to say about the (10.2) system of equations is that its solution 

isn’t unique. The same initial problem, even without taking into account the rigid translations 

                                                 
30 The method of the tangents for a non-linear equation. 
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of a model, generally has more than one solution. Moreover, the number of solutions is 

proportionate to the complexity of the model. In order to demonstrate this characteristic that is 

common to most nonlinear systems of equations, it isn’t necessary to trouble mathematics. 

Rather, it will be sufficient to just think about how many models are so delicate that their 

shape changes irremediably and definitively with just a little touch of the mouse. 

In the rest of this chapter I will take into consideration some typical structures used by 

sodapeople in order to get mathematical explanations of their static shapes. 

 

10.2 REGULAR POLYGONS 

 In this simple case, it is easy to get a solution for the system of equations (10.2). 

Actually, this is the only case in which we will bother with the previous system. The other 

problems will be solved using the simplified hypothesis of the quasi-static problems. 

Let us consider the hexagonal model of Figure 10.1: 

 

1 

2 3 

4 

5 6 

 
Figure 10.1: Hexagonal model. 

 

This hexagonal model has been realized using zipsprings on the border and springs of finite 

length inside the model. The lengths at rest in this model are the data of the problem. They 

are: 
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where l has a particular value expressed in pxl that in this case isn’t important to define 

exactly. Here, it is good enough to know that its value is the data of the problem. The 

unknown quantities of our problem are the coordinates of the free masses in the static 
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equilibrium configuration. Therefore, in order to make the system (10.2) explicit for the 

problem that we are studying, it is important to get the values of the topological index. 

Looking the model of Figure 10.1 we will find: 
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Thanks to these values it is possible to make the system of equations (10.2) explicit. Let us 

first consider the equation that follows from (10.2) for the coordinates x when the index i . 

We will have: 
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or better: 
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that is: 
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Therefore, referencing the values (10.4), this equation can be also written as: 
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Likewise it is possible to find the other 11 equations (five more for the x coordinates and six 

for the y coordinates). Together these equations are: 
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 (10.7) 

 

and so on. 

At this point, rather than try to resolve this problem directly, let’s try to find a short cut. As 

I’ve said before, this system of equations, even without taking into account the rigid motions 

of the solutions, has more than one solution. It’s not important for us to find all these 

solutions, because in this specific problem the different solutions (just two) will all yield the 

same shape for the model. For our purposes, it is sufficient to find just one solution. 

Therefore, if we find values for the coordinates that satisfy all the previous equations, we will 

be sure that we have found one solution to the problem. In order to choose coordinates for this 

“guess and check” method, we could do some practical reasoning. For example, we could 

reasonably assume that in the equilibrium configuration all the free masses will be placed as 

vertices of a regular polygon. Therefore, taking into account the coordinate system indicated 

in Figure 10.2 and calling b the unknown final length of one of the springs inside the hexagon 

in its equilibrium configuration, we have: 
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Figure 10.2: attempted solution 
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 (10.8) 

 

If we can find a value for b (the final length of the springs inside the hexagon) such that the 

equations (10.7) are all satisfied, then we’ll have a solution to our problem. By substituting 

the value of the coordinates (10.8) inside the first equation (10.7) we get: 
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from which follows immediately: 

 

 lb 3
2=  (10.10) 

 

It is easy verify that substituting the coordinate values (10.8) into the equations of the system 

(10.7) always returns the relation (10.10). This simply means: the solution of our initial 

problem is provided by the coordinates (10.8) in which the value of b is provided by (10.10). 
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The expression (10.10) also allows us to know the final dimensions of a hexagonal model 

made with zipsprings on the border and internal springs with a length at rest of l. The relation 

(10.10) can be verified simply by making such a hexagonal model. I’ll leave you the pleasure 

of performing this verification. 

 

10.3 THE PANDORA’S TOYBOX PHENOMENON 

 A few months ago, in the sodarace forum, an interesting debate about an apparently 

strange model appeared. The model in question was Qwertilliopasd’s Pandora's ToyBox. As 

you can see, it seems that the four springs on the boundary of the box have lost their stiffness. 

In fact this isn’t true. There is an explanation of this phenomenon that is in accordance with 

the equilibrium equations (10.2), and now we will find it. But before we do, we’ll need to 

discuss the different types of equilibrium. 

In how many ways is it possible to bring a sphere to equilibrium on a surface? The immediate 

answer to this simple question could be: it depends on the surface. Yes, it is true! Let’s 

examine the following three types of surfaces: a concave surface, a convex surface and a 

horizontal plane surface (see Fig. 10.3). 

 

 

 a)  b)  c) 
 

Figure 10.3: kinds of equilibrium 

 

It seems clear that the sphere has a stable equilibrium on the concave surface (Fig. 10.3 a). 

This hypothesis can be tested by moving the sphere a little bit from its equilibrium position 

and noticing that the sphere immediately returns to its original position. Therefore, we call 

this case a stable equilibrium. We have another intuitive situation when the sphere is in 

equilibrium on a convex surface (Fig. 10.3 b). This is a case of unstable equilibrium, because 

if we move the sphere even a tiny amount from its initial equilibrium position, the sphere will 

definitively lose its equilibrium. Finally, when the sphere is on a horizontal plane 

(Fig. 10.3 c), we have an indifferent equilibrium. In this case the sphere remains in 

http://sodaplay.com/constructor/player?&getmodel=Laboratory+Pandoras_Toybox
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equilibrium no matter where it is moved on the horizontal plane. The main characteristic of a 

typical system in indifferent equilibrium is that the equilibrium of the system has total 

indifference in respect to the configuration of the system. 

Returning now to the discussion of Pandora’s ToyBox, we can clearly see that it is a case of 

indifferent equilibrium. In the following paragraphs, I’ll show that the equilibrium of the free 

masses is totally independent of the geometrical configuration of the model. 

Pandora’s ToyBox is constructed with four zipspring as the contour and two springs of finite 

and equal length as the diagonals. By examining the behavior of this model it is apparent that 

the diagonals maintain a constant length, while the springs that make the sides of the rectangle 

change their lengths apparently without opposition, like springs without stiffness. 

Immediately, there is one important observation we can make. Because the lengths of the 

diagonals don’t change, the free masses of the model always move in the path of a circle with 

a diameter equal to the length of the diagonal springs in their compressed state (see Fig. 10.4). 

 
 

 A 

 B 

 C  O 
α  α−π  

 r 

 
Figure 10.4: The Pandora’s ToyBox 

 

Another important observation is that the Pandora’s ToyBox, regardless of its specific 

configuration, always has a rectangular shape. This fact is also confirmed by an important 

geometrical rule: any triangle inscribed in a half-circumference will be always a rectangular 

triangle. Indeed, the triangle ABC in Figure 10.4 is a rectangular triangle. 

As we already know, the tension of a spring depends solely on the extension of the same 

spring. For this reason, we will now calculate the length of the springs AB and BC in their 
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deformed configurations. Thanks to an important Theorem of trigonometry about triangles, 

looking at the two isosceles triangles OBC and OAB it is possible to get: 
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where r is the radius of the circumference generated by Pandora’s Box (see Fig. 10.4). These 

lengths coincide with the extension of the relative springs since these springs are zipsprings31. 

The elastic forces acting on the free mass B by means of these two zipsprings are: 

 

 




α−=⋅=
α+=⋅=

cos12
cos12

rkBCkF
rkABkF

BC

AB  (10.12) 

 

These forces, directed respectively in the directions of the springs AB and BC, are orthogonal 

forces. Their resultant R, regardless of the structure’s configuration, will be always directed in 

the direction of the spring BD (see Fig. 10.5), and its value can be calculated by means of the 

Theorem of Pythagoras. In the equations (10.12) we see that the values of the forces  and 

 are functions of the angle . However, their resultant R can’t be, because this resultant 

compresses the spring BD without changing its length. It is exactly this fact that will allow us 

to verify that the equilibrium of the Pandora’s Box is an indifferent equilibrium: the value of 

the force R that compresses the spring BD must to be unaffected by the angle ; i.e. the value 

of the force R that compresses the spring BD must to be unaffected by the geometrical 

configuration of the box. Applying the Pythagoras’ Theorem, we get: 

ABF

BCF α

α

 

  ( ) ( ) 222222222 4cos12cos12 rkrkrkFFR BCAB =α−+α+=+=

 

or: 

 

                                                 
31 springs with length at rest equal to zero. 
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  (10.13) krR 2=

 

As you can see, the value of the resultant R is always the same, regardless of the geometrical 

configuration of the box. This shows without any doubt that the Pandora’s ToyBox 

phenomenon is simply an example of indifferent equilibrium. 

 

 

ABF  
BCF  

 R 

 A 

 B 

 C 

 D 
 

Figure 10.5: Force on the spring BD 

 

 

10.4 TENSION SPRINGS / PRE-STRESSED PARTS 

 Almost all the models in the zoo contain structures that the sodaconstructor community 

usually calls “tension springs.” These structures consist of a chain of any number of short 

springs in tension plus another, longer, spring compressed. The importance of these structures 

is remarkable. It is safe to say that without tension springs a large portion of the models in the 

zoo would not exist. 

Another reason these structures are useful is that there is no standard way to make them. 

Tension springs are adaptable to a variety of purposes, because it is possible to construct them 

in a variety of proportions and numbers of internal nodes (see Fig. 10.6). 
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Figure 10.6: Examples of tension springs 

 

Nevertheless, a question about these structures has always remained. What will be the length 

and configuration of a particular tension spring, based on the initial lengths of the springs 

(lengths at rest) used? I, myself, have done many attempts in the past in order to get tension 

springs of particular lengths for my models. After 4 or 5 attempts I was able to get the exact 

proportion for my tension springs. In this section, I’d like to solve this problem in a more 

rigorous way. 

Before I begin, I’ll define the two basic problems to solve regarding tension springs. The first 

problem is the direct problem: How long will the tension spring made with N number of 

springs of a known length at a rest be? The second problem, instead, is the inverse problem: 

How long should the lengths at rest of the springs be in order to create a tension spring of a 

specific length? Without any more delay, let us begin the study of the direct problem. 

 

• The Direct Problem 

 In order to make a tension spring, we need to have N springs in tension plus one in 

compression. Further, the length at rest of the spring in compression must be greater that the 

sum of all the lengths at rest of the springs in tension. 

We will denote with l  the lengths at rest of the N springs in tension inside the 

tension spring. The length at rest of the compressed spring will be represented by l . As 

stated, in order to have a stable tension spring, it will be necessary for: 
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Also, we will call l  the final lengths of the previous  springs that 

constitute our tension spring. 

Nlll ,,,, 210 K 1+N

By looking at Figure 10.7 it is easy to observe this relationship: 
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Figure 10.7: Tension spring in its configuration of equilibrium 

 

Finally, we will call ∆  the stretch of spring number i: il

 

  (10.16) Nilll r
iii ,,2,1,0 K=−=∆

 

Obviously: 

 

 0  (10.17) ;0,,,, 0321 <∆>∆∆∆∆ lllll NK

 

In order to write the equilibrium of all the free masses of the tension spring, it is important to 

know the values of the forces acting on the nodes. These forces will obviously be related to 

the stretches . In particular, calling  the tension on the generic spring i (positive for the 

springs in traction and negative for the spring in compression), applying the well-known 

Hooke’s Law we have: 

il∆ iF

 

  (10.18) NilkF ii ,,2,1,0 K=∆⋅=

 

Figure 10.8 illustrates the forces acting on the free masses of the tension spring. 
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0F  1F  1F  1F 1F 2F   1  2 

 
Figure 10.8: Forces acting on the free masses of the tension spring. 

 

Looking at Figure 10.8 it is possible to understand how, based on the static equilibrium of the 

free masses, the following relations are valid: 
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that is: 

 

  (10.19) NN FFFFFF ======− −13210 L

 

With the combination of (10.18) and (10.19) immediately follows this important relation: 

 

  (10.20) lllllll NN ∆=∆=∆==∆=∆=∆=∆− −13210 L

 

That is, all the springs are subject to the same tension, in absolute value. Specifically, the 

springs 1  are subjected to the unknown extension , while the spring 0 is subjected 

to the contraction . 

N,,2, K l∆

l∆−

Thanks to (10.20), from (10.16) follows: 
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Substituting these relations into the equation (10.15) we get: 
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or better: 
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 (10.22) 

 

This expression is very important, since gives us the value of the stretch  of each spring in 

the tension spring. From this positive value

l∆
32, thanks to (10.21) it is possible to get the final 

lengths of all the springs. In particular, the final length of the tension spring will be: 
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It is very simple to verify this relation by constructing a tension spring and measuring all the 

lengths at rest, as well as the final length. I will leave this exercise to you. 

 

• The Inverse Problem 

 In the inverse problem, we know the final lengths l  of the springs, and we 

need to find lengths at rest of all the springs in our tension spring. 

Nlll ,,,, 210 K

                                                 
32 We can safely say this because of (10.14). 
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Taking into account what we have already obtained in the previous direct problem, the 

solution of the inverse problem is fairly trivial. We can simply follow these three steps: 

1. Choose an arbitrary value for the length at rest l . r
0

2. Calculate the stretch value ∆ . 00 lll r −=

3. To calculate the length at rest of all the springs by means of the formula 
 Nilll i

r
i ,,2,1 K=∆−=

And that’s it. Once again, I will leave you with the pleasure of testing this procedure. 

 

10.5 LINEAR MOTORS 

 For the last application of the quasi-static procedure, I just can’t help but examine my 

beloved linear motors. These structures have given me a lot of satisfaction, so I feel obligated 

to return the favor. In this last section of the last chapter of this long paper about soda physics, 

I will talk about the physical-mathematical behavior of these amazing structures. 

The mathematical characterization of these structures requires the study of all the possible 

configurations that a linear motor can assume in its movement, so here I will limit myself to 

just an explanation of the 3 point linear motor. Nevertheless, the procedure that I will adopt 

for this study can also be applied to more complex linear motors. 

To begin, it is important to explain how it is possible to make a 3pt linear motor. It is very 

simple: a 3pt linear motor is a triangle with 3 equal muscles timed respectively at the 1/3 

divisions of the wave, and simulated with maximum wave and muscle amplitudes. You can 

view a 3pt linear motor here. 

When the simulation is started, the triangular model will assume a typical linear configuration 

and the masses will start to move back and forth with periodical cadence. 

Let us start the study of this motor by taking into account the placement of the three free 

masses indicated in the following Figure 10.9: 

 

http://sodaplay.com/constructor/player?&getmodel=motors+3pt_Linear_Motor
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 1  2  3 
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Figure 10.9: 3pt linear motor 

 

As indicated, we will report the position of the masses with respect to mass 1. In this way, we 

will eliminate from the resolution of the problem all the unessential rigid motions. 

Taking into account what we know about the muscles of this motor, we can say that their 

lengths at rest at a generic instant of time t will be: 
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 (10.24) 

 

while the effective lengths of the same three muscles at a generic instant of time t will be (see 

Fig. 10.9): 
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Therefore, from (10.24) and (10.25) follows the stretch of the three springs: 
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Like in the previous problem, when the value of the stretch of the muscle , the muscle 

is in extension, while when the stretch of the muscle , the muscle is in compression. 

Applying Hooke’s Law, we get also the values of the tensions of the muscles: 

0>∆l

0<∆l
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Likewise, the previous case from the equilibrium of the free masses 2 and 3 follows: 
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Thanks to the (10.27), this can be written as: 
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Therefore, taking into account (10.26), finally we get: 
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This is a linear system of two equations in the two unknown coordinates  and . The 

solution of this system of equation is: 

2x 3x
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At this point, by simply substituting the expression of the lengths at rest (10.24) in the 

solution (10.31), we will get part of the solution: the laws of variation in time of the 

coordinates  and . ( )tx2 ( )tx3

This solution, unfortunately, isn’t enough to fully describe the behavior of the 3pt linear 

motor, because the relations (10.25) are only valid when the following conditions are 

satisfied: 
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During the movement of the 3pt linear motor, the free masses continually change their 

respective positions, so that the conditions (10.32) aren’t always satisfied. Therefore, the 

solution provided by (10.24) and (10.31) is only valid when the configuration is like that 

reported in Figure 10.9. 

In order to get a general solution for the 3pt linear motor, it is indispensable to study all the 

possible reciprocal positions of the three free masses during their movement. I’ve already 

done this complete study but I will avoid repeating this work here. It will suffice to say that 

there are a total of six possible configurations of the three free masses during their motion. 

Therefore, in order to completely describe the behavior of the 3pt linear motor, we’ll need six 

different solutions like (10.31). 

In the diagram of Figure 10.10, I’ve reported all six different solutions. The behavior of the 

coordinates  and  is displayed in green and red curves. It is nice to note that these 

two curves were been obtained by taking different pieces of the six solutions. 

( )tx2 ( )tx3

Another thing to note is that the length of period for the motion of the free masses is double 

the period of the muscles. 
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Figure 10.10: Displacement of the masses in a 3pt linear motor. 

 

The diagram of Figure 10.10 was been obtained by taking an initial length of the muscles 

equal to  and a pulsation equal to pxll 10= frmrad1=ω . The horizontal axis represents 

the time expressed in frames, while the vertical axis represents the values of the displacement 

 and  expressed in pixels. ( )tx2 ( )tx3
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APPENDIX A: THE PENDULUM 

 

 The pendulum was the first instrument used in this paper in order to find the value of the 

gravity constant g with accuracy. As you can see in Figure A.1, its structure is very simple. It 

consists of an inextensible wire of negligible mass connected to a mass at a fixed point. The 

system is subjected to a uniform gravitation field in the negative direction of the y-axis.  

 
 

 l 

 y 

 x 

 m  x 

 y 

α  

 
Figure A.1: System of reference for the pendulum. 

 

To get the differential equation of motion for the pendulum, we will apply the conservation of 

energy. 

The coordinates of the pendulum mass are: 
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therefore, their time derivatives are: 
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&&

ly
lx

 

To find the kinetic energy we need the square of the velocity. Therefore, from (A.2) follows: 
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  (A.3) 222 α= &lv

 

The total energy E of a system is given by the sum of the kinetic energy and the potential 

energy. Therefore, we have: 

 

 ( α−+α=+= cos122
2
12

2
1 mglmlygmmvE & ) (A.4) 

 

Since the total energy is constant in time (conservation of energy): 

 

 0=
td
Ed

 (A.5) 

 

Taking into account the expression (A.4) of the energy, from (A.5) follows: 

 

 0sin22
2
1 =αα+αα= &&&& mglml

td
Ed  (A.6) 

 

that is: 

 

  (A.7) 0sin2 =αω+α&&

 

where we have assumed the position: 

 

 
l
g

=ω2  (A.8) 

 

The equation (A.7) represents the differential equation of motion for the pendulum. This 

equation isn’t linear, so its solution isn’t so simple to get. In order to get a simple solution for 

the above differential equation it will be necessary to assume that the maximum amplitude of 

the pendulum oscillation is small enough that it be possible to approximate: 
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  (A.9) α≈αsin

 

In the virtual experiments performed to find the constant g of the applet, a maximum value of 

 equal to  has been assumed. This value certainly guarantees for the 

relation (A.9) errors less than the experimental errors in the above virtual experiments. 

α rad05.0max =α

Thanks to the relation (A.9), the differential equation (A.7) becomes: 

 

 0  (A.10) 2 =αω+α&&

 

As will be shown in detail in Appendix B, the solution of this linear differential equation is: 

 

  (A.11) ( ) ( )ϕ−ωρ=α tt cos

 

where: 

 

 













ωα
α

=ϕ









ω
α

+α=ρ

0

0

2
02

0

tan
&

&

 (A.12) 

 

and: 

 

  (A.13) 
( )
( )




α=α
α=α

0
0

0

0
&&

 

From the solution (A.11) it is possible to get the value of the period T of a complete 

oscillation of the pendulum; i.e. the minimum value that satisfies the relation: 

 

  (A.14) ( ) ( )( ) tTtt ∀ϕ−+ω=ϕ−ω coscos
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This value is: 

 

 
ω
π

=
2T  (A.15) 

 

or better: 

 

 
g
lT π= 2  (A.16) 

 

From this relation follows immediately: 

 

 
2

24
T

lg π
=  (A.17) 

 

This relation is very important, because it allows us to find the value of the gravity 

acceleration g by simply measuring the period T of a complete oscillation of the pendulum. 
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APPENDIX B: DAMPED FREE VIBRATIONS (SINGLE DEGREE OF FREEDOM) 

 

 Let us consider a system with just one degree of freedom like that schematized in 

Figure B.1. 

 

 k 

 x 

 m 

 
Figure B.1: System with one degree of freedom 

 

This system consists of a mass that is free to move on the surface of a plane. This mass is 

connected to a rigid wall by means of a spring of stiffness k. In its movement, this mass will 

also be subjected to the air friction f. In order to describe mathematically the movement of 

this mass, the origin will be placed on the left side of the mass in its configuration of static 

equilibrium. The positive direction of the displacements, velocities, acceleration and forces 

will be from the left to the right. 

The forces acting on the mass in its movement are the elastic force  and the damping force 

. Their values are: 

eF

vF

 

  (B.1) 




−=
−=

xfF
xkF

v

e
&

 

in which the dependence from time is understood. From Newton’s second law follows: 

 

  (B.2) xmFFF ve &&=+=

 

that is: 
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 0  (B.3) =++ xkxfxm &&&

 

or better: 

 

 0=++ x
m
kx

m
fx &&&  (B.4) 

 

In order to simplify the mathematical treatment of this problem, we will assume the following 

positions: 

 

 








ωξ=

ω=

2

2

m
f
m
k

 (B.5) 

 

so that the differential equation (B.4) can be written as: 

 

 0  (B.6) 2 2 =ω+ωξ+ xxx &&&

 

This is a linear homogeneous differential equation with constant coefficients. Its solution 

provides the law of the displacement of x over time. 

We are looking for solutions to the equations (B.6) in the form: 

 

  (B.7) ( ) { }tetx t λ== λ exp

 

The first and second derivatives of this function are: 

 

  (B.8) 
( ) { }
( ) { }




λλ=
λλ=

ttx
ttx

exp
exp
2&&

&
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Therefore, substituting the relations (B.7) and (B.8) in the differential equation (B.6) we get 

the equation: 

 

  (B.9) { } { } { } 0expexp2exp 22 =λω+λλωξ+λλ ttt

 

which is a 2nd degree algebraic equation: 

 

  (B.10) 02 22 =ω+λωξ+λ

 

The two solutions of this equation are: 

 

 




 −ξ±ξ−ω=λ 12

2,1  (B.11) 

 

At this point, before acquiring the solutions of the original differential equation, we must 

distinguish between the following three cases: 

1.3
1.2
1.1

<ξ
>ξ
=ξ

 

In the firsts two cases, the values (B.11) of the constants  will both be real and negative 

numbers. In these two cases, the solutions of the differential problem won’t include any 

oscillatory movement. The mass will tend to return directly to its quiet configuration. The 

limit value of the coefficient ξ  that distinguishes this particular behavior of the mass from the 

typical oscillatory movement is ξ . Taking into account the positions (B.5), we have  

when: 

λ

1= 1=ξ

 

 mkf 2=  (B.12) 

 

This is the value of the critical damping. Whenever the damping coefficient f is greater than 

mk2 , the oscillatory behavior of the mass will vanish. These are cases of overdamping. 
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Taking into account the position assumed for the stiffness k and the damping coefficient f, the 

relation (B.12) can also be written as: 

 

 kf 2=  

 

Whenever we set the damping value f  greater than k2  our models will not present 

oscillatory behavior. I usually use overdamping when making complex models, where I need 

to move free masses that are already connected out of the way in order to make other 

connections. Then, I simply start the simulation of the model, and the dislocated free masses 

slowly return to their places, without causing oscillations in the model. 

We will not study the overdamping case, because it has no application in this paper. 

Therefore, I’ll restrict myself to write just the final solution for the critical damping (B.12). 

When  we will have: 1=ξ

 

  (B.13) ( ) ( )[ ] { ttvtxtx ω−+ω+= exp1 00 }
 

where: 

 

  (B.14) 
( )
( )




=
=

0
0

0

0

xv
xx
&

 

The typical behavior of a system with critical damping is reported in the diagram of 

Figure B.2. 
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 ( )tx  

t  
 

Figure B.2: Displacement of a system with critical damping. 

 

In order to define a procedure for the determination of the damping parameter f it is important 

to study the third case, where . In this case, the values of the constants  in (B.11) can 

be written as: 

1<ξ λ

 

 




 ξ−±ξ−ω=λ 2

2,1 1i  (B.15) 

 

in which has been introduced the imaginary unit 1−=i . The values of the previous constant 

(B.15) can be also written as: 

 

  (B.16) Diω±ωξ−=λ 2,1

 

in which has been introduced the damped frequency: 

 

 21 ξ−ω=ωD  (B.17) 

 

Substituting the complex values of the constant  in (B.7), we get the following two 

independent solutions for the differential equation (B.6): 

λ

 

  (B.18) 
( ) { } { }
( ) { } { }




ω−ωξ−=
ωωξ−=

tittx
tittx

D

D

expexp
expexp

2

1
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These two solutions, thanks to the well-known Euler formula: 

 

  (B.19) { } aii sincosexp +α=α

 

can be also written as: 

 

  (B.20) 
( ) { } ( ) ( )[ ]
( ) { } ( ) ( )[




ω−ωωξ−=
ω+ωωξ−=

tiitittx
tiitittx

DD

DD

sincosexp
sincosexp

2

1

]
 

One of the primary properties of a linear differential equation is that if its solution is 

combined in a linear way, the result of this combination is itself a solution of the original 

differential equation. Therefore, rather than use the complex solutions (B.20), it will be more 

convenient to use the following two different solutions derived from (B.20) by means of two 

special linear combinations: 

 

 
( ) ( ) ( ) { } ( )

( ) ( ) ( ) { } (









ωωξ−=
−

=

ωωξ−=
+

=

tt
i

txtx
tx

tt
txtx

tx

D

D

sinexp
2

cosexp
2

21
2

21
1

)

)]

 (B.21) 

 

Therefore, the general solution for the linear differential equations (B.6) can be written as: 

 

  (B.22) ( ) { } ( ) ([ tAtAttx DD ω+ωωξ−= sincosexp 21

 

The values of the constants  and  can be written in terms of the following initial 

conditions: 

1A 2A

 

  (B.23) 
( )
( )




=
=

0
0

0

0

xv
xx
&
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After slight mathematical manipulation, we find the following values of the constants  and 

 in terms of the initial conditions: 

1A

2A

 

 






ω
ωξ+

=

=

D

xv
A

xA
00

2

01
 (B.24) 

 

so that the general solution (B.22) can be also written: 

 

 ( ) { } ( ) ( 







ω

ω
ωξ+

+ωωξ−= t
xv

txttx D
D

D sincosexp 00
0 )  (B.25) 

 

Another and more compact expression for the solution (B.25) can be obtained by simply 

imposing the following two positions: 

 

 0
00 cos;sin x

xv

D
=ϕρ

ω
ωξ+

=ϕρ  (B.26) 

 

Indeed, substituting in (B.25) the positions (B.26) we get the following expression for the 

solution of the linear differential equation (B.6): 

 

  (B.27) ( ) { } ( )ϕ−ωωξ−ρ= tttx Dcosexp

 

where from (B.26) follows immediately: 

 

 













ω
ωξ+

=ϕ









ω
ωξ+

+=ρ

D

D

x
xv

xv
x

0

00

2
002

0

tan

 (B.28) 
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The solution (B.27) is particularly eloquent, because it allows us to understand the behavior of 

a damped free oscillation. Indeed, this solution is essentially composed of two parts: the 

amplitude of the oscillation that decreases with law , and the oscillatory part 

 with period equal to 

{ tωξ−ρexp }
)( ϕ−ω tDcos Dωπ= 2T . In the following Figure B.3 it is possible to 

see the typical behavior of a single degree of freedom damped free oscillation. 

 
 

ν+nt  nt  

• 

• 

( )tx  

t  

nx  

ν+nx  

 
Figure B.3: Behavior of a damped free oscillation. 

 

The solution (B.27) of the differential equations (B.6) is very important, because it will allow 

us to find a relation for the experimental determination of the damping parameter f. By simply 

measuring the amplitude of two different peaks of the oscillation, the value of the damping 

parameter f can be determined. 

Obviously, we will have peaks of oscillations approximately when: 

 

  (B.29) ( ) 1cos =ϕ−ω tD

 

This happens with periodical cadence established by the period Dωπ= 2

( ) 1=ϕ−nt

n ν+

T . Therefore, by 

measuring the peak  that occurs at time t  such that cos , and then, after 

 complete oscillation, measuring the peak  that occurs at time t , we 

find: 

nx n ωD

1≥ν ν+nx Ttn ν+=

 

  (B.30) 
{ }
{ } ( ){ } { } {




νωξ−ωξ−ρ=ν+ωξ−ρ=ωξ−ρ=
ωξ−ρ=

ν+ν+ TtTttx
tx

nnnn

nn

expexpexpexp
exp

}
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in which the known quantities are the already measured values of  and . From the 

ratio of these two quantities follows: 

nx ν+nx

 

 { }








ω
π

νωξ=νωξ=
ν+ Dn

n T
x
x 2expexp  (B.31) 

 

Taking the natural logarithm of both sides of (B.31) we have: 

 

 
Dn

n

x
x

ω
π

νωξ=








ν+

2ln  (B.32) 

 

or better: 

 

 
Dω
π

νωξ=δ
2  (B.33) 

 

in which has been introduced the logarithmic parameter: 

 

 







=δ

ν+n

n

x
x

ln  (B.34) 

 

Remembering the previous positions (B.5) and (B.17), from (B.33) follows: 

 

 
2

222
2

4
4

fmk
f

−

πν
=δ  (B.35) 

 

or better: 
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221

2









δ
νπ

+

=
mk

f  (B.36) 

 

Thanks to (B.34) and (B.36), it is possible to experimentally determine the value of the 

damping constant f. 

 

• The Undamped Free Vibrations 

 In the simplest case, where the mass of Figure B.1 isn’t subjected to any air friction, 

 and, consequently,  so that the differential equation of motion (B.6) becomes: 0=f 0=ξ

 

  (B.37) 02 =ω+ xx&&

 

The general solution for this differential equation can be obtained from the solution (B.27) by 

simply taking . Therefore we have: 0=ξ

 

  (B.38) ( ) ( )ϕ−ωρ= ttx cos

 

where the constants ρ  and  are related to the initial position  and velocity  by means 

of the relations: 

ϕ 0x 0v

 

 













ω
=ϕ









ω

+=ρ

0

0

2
02

0

tan
x
v

v
x

 (B.39) 

 

From the solution (B.38) it is possible to see that the oscillations of this system won’t have 

any diminution of their max amplitude over time. This means that in this kind of oscillation, 

there isn’t any loss of energy over time. In order to create this phenomenon using the 

sodaconstructor applet, simply make friction f equal to zero. 



THE  PHYSICS  BEHIND  THE  SODACONSTRUCTOR   -   by Jeckyll       113/123  

From the solution (B.38) it is also possible to see how the period T of a complete oscillation 

is: 

 

 
ω
π

=
2T  (B.40) 

 

From this relation, taking into account the original expression of the frequency ω  reported in 

(B.5), follows: 

 

 
2

2
2 4

Tm
k π
==ω  (B.41) 

 

or better: 

 

 m
T

k
2

24π
=  (B.42) 

 

Thanks to this relation, by simply measuring the period of a complete oscillation of an 

undamped system like that indicated in Figure B.1, it is possible to get the value of the 

stiffness of a spring. 
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APPENDIX C: OTHERS NUMERICAL TECHNIQUES 

 

 In chapter 9, I presented the simplest numerical technique that can be used to solve a set 

of differential equations: the finite difference method. Nevertheless, this technique isn’t 

particularly efficient33 and can’t be applied in many cases of physical relevance. Moreover, as 

can be discovered by reading an old discussion in the sodarace forum, the numerical 

algorithm used in the sodaconstructor applet is the Euler method. For these reasons, I’ve 

decided to explain Euler and other numerical algorithms in this appendix. 

 

• The Euler Method: Non-Linear Differential Equation of the First Order 

 The most general expression for a non-linear differential equation of first order is: 

 

  (C.1) ( ) ( )[ 0,, =′ xxyxyf ]

                                                

 

where f is a generic function of three variables34, while  is the unknown function. 

Generally speaking it is possible to say that this differential equation has infinite solutions; i.e. 

there are infinite functions  that satisfy the equation (C.1). Nevertheless, here we are 

concerned with numerical techniques that allow us to find one particular solution by means of 

its numerical values. Therefore, we need to specify which of the infinite solutions of (C.1) we 

are looking for. At this point the question is: how is it possible to specify what solution we are 

looking for? The answer is simple: choosing a starting point from which the numerical 

technique will be able to “construct” the entire solution. This starting point is normally 

specified by means of the boundary condition that, for the differential equation (C.1), takes 

the expression: 

( )xy

( )xy

 

  (C.2) ( ) 00 yxy =

 

where  and  are the coordinates of a particular point on the xy plane. 0x 0y

 
33 I’ll clarify better what I exactly mean when I speak about efficiency at the end of this appendix 
34 The expression of this function is well known since it depends of the particular problem that we are studying. 

http://sodarace.net/forum/thread.jsp?forum=17&thread=561&start=30&msRange=15
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It is possible to see that under certain conditions there is just one solution of the differential 

equation (C.1) that will pass through the point . 00 , yx

In order to apply Euler’s method, it is important to rewrite the differential equation (C.1) in its 

normal form: 

 

  (C.3) ( ) ( )[ xxyfxy ,=′ ]

)

 

where f is now a different function (of two variables). Obviously we also need the boundary 

condition (C.2). 

Since the first derivative of a function represents the slope of that function at a particular 

point, we are immediately able to recognize that the differential equations (C.3) together with 

its boundary condition (C.2) give us the slope “s” of the unknown function  at the point 

 (see Figure C.1): 

( )xy

00 , yx

 

  (C.4) ( ) ( )[ ] ( 000000 ,, xyfxxyfxys ==′=

 

 

x  

y  

0x  hxx += 01

h  

0y  

1y

( )1xy  ( )hxyhs 00 ′=  

( )xy  

 
Figure C.1: The geometric meaning of the first derivative 

Therefore, if we choose a finite interval h, we’ll be able to get a second point on our unknown 

function taking: 
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  (C.5) 




+=
+=

hsyy
hxx

001

01

 

However, looking at Figure C.1, it is clear that the point  isn’t really a point on our 

unknown function . The point  is just an approximation of the true (but unknown) 

point . Obviously, this approximation is due to the substitution of the bent piece of 

the function  in the interval (  with a straight line having the same slope as 

 at . 

11, yx

( )xy 11, yx

xx 00 ,

( 11, xyx

y

0x

)
)( )x h+

( )xy

For the sake of clearness, a big interval was chosen for the interval h in Figure C.1. But, as 

you can see in Figure C.1, the error  gets smaller as h decreases, so that the point 

 obtained using (C.4) and (C.5) will be a good approximation of a point of  if we 

have a small value for h. 

( )11 xyy −

11, yx ( )xy

Now, having a second point of our function, using the same procedure we will be able to find 

a third point using the new formulas: 

 

  (C.6) 
( )








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+=+=

=
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and so on for more and more points of . At step number i we will have: ( )xy

 

  (C.7) 
( )
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+=
⋅+=

=
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−−−
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iii
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111 ,

 

These relations will allow us to find all the points of our unknown function , step by step. ( )xy
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• The Euler Method: System of Non-Linear Differential Equations of the First Order 

 In the previous section I talked about the use of Euler’s method when our mathematical 

problem is represented by a non-linear differential equation of the first order. Here I’ll talk 

about the use of the same numerical algorithm when our problem is represented by a system 

of non-linear differential equations of the first order. 

Since it is trivial to get the generalization to a system of N differential equations, here I’ll 

restrict myself to talk about a simple system of two differential equations of first order in two 

unknown functions. This system in its normal form is: 

 

  (C.8) 
( ) ( ) ( )[ ]
( ) ( ) ( )[




=′
=′

xxzxygxz
xxzxyfxy

,,
,,
]

                                                

 

where  and  are the unknown functions while f and g are two generic functions with 

three variables

( )xy ( )xz
35. Obvioulsy, along with this system of differential equations we must also 

specify the correspondent boundary conditions. These, for our problem, are: 

 

  (C.9) 
( )
( )


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=
=

00

00

zxz
yxy

 

Like in the previous case, taking into account the geometrical meaning of the first derivative 

of a function, from (C.8) and (C.9) we get the slopes  and  of the functions  and 

 respectively in correspondence with the abscissa : 

ys0

0x

zs0 ( )xy

( )xz
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35 As in the previous case, these functions are well known since they depend on the particular problem that we 
are studying. 
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Therefore, fixing a small finite interval h, the approximate values of the functions  and 

 in correspondence with the abscissa  will be: 

( )xy

( )xz hx +0

 

  (C.11) 
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Thanks to these new values we will be able to iterate the same procedure in order to get a 

sequence of points  that represents our approximate solution to the problem defined 

by the system of differential equations (C.8) and the relative boundary conditions (C.9). 

iii zyx ,,

The generic expressions for step number i of the iteration are: 
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• The Euler Method: Non-Linear Differential Equations of the Second Order 

 Usually, the equations of motion for a physical system are expressed in terms of 

differential equations of the second order. For this reason we will now discuss the application 

of the Euler method in the resolution of a non-linear differential equation of the second order. 

This equation in its normal form has the expression: 

 

  (C.13) ( ) ( ) ( )[ xxyxyfxy ,,′=′′

 

where  is the unknown function and f is a particular function with three variables. ( )xy

Once again, you can see that in order to get a specific solution of this differential equation 

(C.13) we need an appropriate number of boundary conditions. In this case we have: 
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with the constants . 000 ,, yyx ′

As we know, Euler’s method is based on the geometric meaning of the first derivative of a 

function, so this method seemingly can’t be applied to the differential equation (C.13), where 

the second derivative of the function  appears. However, I’ll show you how it is always 

possible to transform a differential equation of the second order (C.13) into a system of two 

differential equations of the first order. To do that, let’s examine the following position: 

( )xy

 

  (C.15) ( ) ( )xyxz ′=

 

Indeed, using this relation, the differential problem defined by the relations (C.13) and (C.14) 

becomes: 
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together with the following boundary conditions: 
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It’s easy to recognize that the differential problem shown in equations (C.16) and (C.17) is an 

instance of the problem that wediscussed in the previous section. Therefore, the Euler method 

is applicable. 
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• The Euler Method: Systems of Differential Equations of the Second Order 

 The equations of the motion of a generic model were formulated in chapter 8 of this 

paper. Looking at (8.10) it is easy to see that these equations are organized in a system of 2N 

non-linear equations of second order in 2N unknown functions of time. How can these 

equations be solved with Euler’s method? The answer is contained in the previous three 

sections of this appendix. Indeed, using the same mathematical trick used in the previous 

section, it is easy to understand how the equations (8.10) can be transformed into a system of 

4N differential equations of the first order in 4N unknown functions of time. These unknown 

functions will be the nodes’ coordinates of the model and the relative components of velocity. 

Therefore, the resolution of the equations (8.10) can easily be obtained using the Euler 

method, as already explained. 

 

• The Euler Method: Final Considerations 

 Even if the Euler method is better than the finite differences method explained in 

chapter 9, it still isn’t particularly efficient. But what exactly does it mean to say that a 

numerical method isn’t “efficient”? The question is perfectly sensible. 

Obviously, before we can say that a particular numerical technique isn’t efficient, we need 

another numerical technique to compare it to. So it would be more correct to state that the 

Euler method isn’t as efficient as other numerical methods. But saying shifts the problem. 

Now the question is: what exactly is meant by the word “efficiency”? The answer isn’t trivial 

for the simple reason that the concept of “efficiency” depends greatly on the purpose of our 

use of a numerical technique. 

Usually the concept of efficiency of a numerical method is strictly related to both the accuracy 

of the results and the speed of calculus. Depending on our particular purpose, it could 

sometimes be necessary to compromise either the accuracy of the results or the speed of the 

calculus. Moreover, for certain kinds of calculus under the category of “simulations”, the 

purposes are both accuracy of results and speed of calculus; but this isn’t an iron rule. Indeed, 

although the sodaconstructor is essentially a simulation program, it is important to remember 

that it is also just a game36, so it isn’t particularly important to obtain perfect accuracy of the 

                                                 
36 A beautiful game in my opinion. 
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results. It is enough that the models can walk reliably on the screen. Therefore, for the 

sodaconstructor, it might be better to favor the speed of calculus. 

The Euler method isn’t particularly efficient with either accuracy or speed. Still, this method 

is good enough for the sodaconstructor’s purposes37. 

The last question is: what numerical methods are better than Euler? 

 

• The Runge-Kutta’s Algorithm 

 Here I wish to say just a few words about the Runge Kutta algorithm. The main reason is 

that this algorithm was used in another simulation game similar to the sodaconstructor but in 

3D: Beaker’s Springs Lab. 

The first important thing to say is that the Runge-Kutta algorithm is based on the Euler 

method. Also, the Runge-Kutta algorithm represents a class of numerical techniques. For this 

reason, here I’ll talk only about the first order Runge-Kutta method38. 

The problem that we’ll take into consideration is defined by the following non-linear 

differential equation of the first order in normal form: 

 

  (C.18) ( ) ( )[ xxyfxy ,=′ ]
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together with the boundary condition: 

 

  (C.19) ( ) 00 yxy =

 

The basic idea of the Runge-Kutta first order method is to use a different slope in order to get 

a more accurate value of the approximate value . In the Euler method the value of the slope 

was: 

1y
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37 i.e. our entairtment. 
38 The zero order Runge-Kutta method is just the Euler method. 
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In the Runge Kutta method, however, the value of the slope is taken in the middle of the 

interval . As can be seen in Figure C.2, the value of this slope is taken at the 

coordinates 

( hxx +00 , )

hsy 02
1

0 +hx 2
1

0 ,+

0
~s

 where  is the value defined by (C.20). This new and more 

accurate slope  is given by (C.18) by means of the relation: 

0s
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Figure C.2: The Runge-Kutta’s method. 

 

Therefore the approximate value of the function  in correspondence with the abscissa 

 is given by: 

( )xy

hxx += 01
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It is clear from Figure C.2 that this approximate value is more accurate than the corresponding 

value  of the Euler method. ey1

At this point, it is possible to find the sequence of points of our unknown function  by 

simply iterating the above procedure. 

( )xy

The generic formulas for step number i of the above procedure are the following: 
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It is possible to use the Runge-Kutta first order method for different objectives. The first 

possibility is to use this numerical method in order to obtain an approximate solution more 

accurate than the solution obtained using the Euler method, while still maintaining the same 

computational charge. Or, a second possibility is to use this method in order to get an 

approximate solution as accurate as the solution obtained using the Euler method, but having 

a smaller computational charge. 


