
Computer Science for Fun Issue 16

ISSN 1754-3657 (Print)
ISSN 1754-3665 (Online)

Clean up your
language!
Messages, machines
and messiness

Ninja hacking for fun

Zombie attack!

Play your drawings

Welcome to cs4fn

2

The heart
of an Arabic
programming
language

I learn
Greek,
you can
too

There’s an app for that!
Learning a new language
is never easy, but Anthony
Ladis, a student at Queen
Mary, University of London, is

helping primary school pupils to get a grip
on Greek. His final year project is a free
app, iLearnGreek. It tests understanding of
simple Greek words, like clothes, colours
and the seasons, in a series of fun games.
It also lets kids write Greek letters to win
virtual trophies. Real pupils and teachers
who tested the app felt it really helped
make learning fun. Download it for free
from the App Store!

Find more free apps from Queen Mary at
www.qappsonline.com

www.cs4fn.org

It may seem odd to the uninitiated but
language – that most human of inventions – is
also a core topic of computer science. Computers
are just machines that can f ctions – programs.
Those instructions have to be written in special
languages (programming languages) that are
precise and unambiguous. New languages are
being invented all the time each designed to
simplify different bits of computing. Some make
it easier to write programs while others are used
to check that computer systems behave the way
they should.

Language isn’t just the thing that makes
computers tick. A lot of exciting computer
science helps them work with human languages.
The earliest computers were actually developed

Language
in the
machine

So far all computer languages have been
written in English, but that doesn’t need to
be the case. Computers don’t care.
Computer scientist Ramsey Nasser has
developed the first programming language
that uses Arabic script. His computer
language is called بلق. In English, it's
pronounced "Qalb", after the Arabic word
for heart. As long as a computer
understands what to do with the
instructions it's given, they can be in any
form, from numbers to letters to images.

to do exactly that – in World War II to allow
the Allies to unravel the complex German secret
codes. Now with Internet technology, computer
science is inextricably linked with the way we
communicate. It helps us send messages to each
other and can also to hide messages from
snoopers. Computers help us translate from one
language to another and may even help to save
threatened languages. Language is the essence
of computer science.

3

Ninja hacking
for fun

Perhaps the most famous white-hat
hacker is Kevin Mitnick. He started out as
a bad guy – the most wanted computer
criminal in the US. Eventually the FBI
caught him, and after spending five years
in prison he reformed and became a
white-hat hacker who now runs his own
computer security company. The way he
hacked systems had nothing to do with
computer skills and everything to do with
language skills. He did what’s called
social engineering. A social engineer uses
their skills of persuasion to con people
into telling them confidential information
or maybe even actually doing things for
them like downloading a program that
contains spyware code. Professional
white-hat hackers have to have all round
skills: network, hardware and software
skills, as well as social engineering ones.
They need to understand a wide range of
potential threats if they are to properly
test a company’s security and help them
fix all the vulnerabilities.

Breaking the law and ending up in jail,
like Kevin Mitnik, isn’t a great way to
learn the skills for your long-term career
though. A more normal way to become an
expert is to go to university and take
classes. Wouldn’t playing games be a

much more fun way to learn than sitting
in lectures, though? That was what
Tamara Denning, Tadayoshi Kohno, and
Adam Shostack, computer security
experts from the University of Washington,
wondered. As a result, they teamed up
with Steve Jackson Games and came up
with Control-Alt-Hack™. It’s based on the
cult tabletop card game, Ninja Burger®.

Rather than being part of a Ninja Burger®
Delivery team, in Control-Alt-Hack™ you
are an ethical white-hat hacker working
for an elite security company. You have to
complete missions using your Ninja
hacking skills: from shutting down the US
telephone network to turning a robotic
vacuum cleaner into a pet. The game is
lots of fun, but the idea is that by playing
it you’ll learn lots about the kinds of
threats that security experts have to
protect against.

So if you like gaming why not learn
something useful at the same time as
having fun? Who knows, it might even
lead one day to a career as a security
expert.

cs4fneecs.qmul.ac.uk

Try their game by visiting
www.controlalthack.com

Computer hackers are the bad guys, aren’t they? They cause
mayhem: shutting down websites, releasing classified information,
stealing credit card numbers, spreading viruses. They can cause
lots of harm, even when they don’t mean to. Not all hackers are
bad though. Some, called white-hat hackers, are ethical hackers,
and the best are paid by companies to test their security by
actively trying to break in with permission – it’s called penetration
testing. It’s not just business though, it’s also now a game.

Iain M Banks's science fiction novels about ‘The Culture’ imagine a
universe inhabited (and largely run) by ‘Minds’. These are incredibly
intelligent machines – mainly spaceships – that are also
independently thinking conscious beings with their own
personalities. From the replicants in Blade Runner and robots in Star
Wars to Iain M Banks’s Minds, science fiction is full of intelligent
machines. Could we ever really create a machine with a mind: not
just a computer that computes, one that really thinks? Philosophers
have been arguing about it for centuries. Things came to a head
when philosopher John Searle came up with a thought experiment
called the 'Chinese room'. He claims it gives a cast iron argument
that programmed 'Minds' can never exist. Are the computer
scientists who are trying to build real artificial intelligences wasting
their time? Could zombies lurch to the rescue?

4 www.cs4fn.org

The Chinese room

Searle answers this by imagining a room
in which a human sits. She speaks no
Chinese but instead has a book of rules –
the aliens' computer program written out
in English. People pass in Chinese
symbols through a slot. She looks them
up in the book and it tells her the
Chinese symbols to pass back out. As she
doesn't understand Chinese she has no
idea what the symbols coming in or going
out mean. She is just uncomprehendingly
following the book. Yet to the outside
world she seems to be just as much a
native speaker as that machine monk.
She is simulating the ability to
understand Chinese. As she's using the
same program as the monk, doing exactly
what it would do, it follows that the
machine monk is also just simulating
intelligence. Therefore programs cannot
understand. They cannot have a mind.

Is that machine monk
a Mind?

Searle's argument is built on some
assumptions. Programs are 'syntactic
devices': that just means they move
symbols around, swapping them for
others. They do it without giving those
symbols any meaning. A human mind on
the other hand works with 'semantics' –
the meanings of symbols not just the

The Chinese
room:
zombie
attack!

The Shaolin warrior
monk

Imagine that the galaxy is populated by
an advanced civilisation that has solved
the problem of creating artificial
intelligence programs. Wanting to observe
us more closely they build a replicant that
looks, dresses and moves just like a
Shaolin warrior monk (it has to protect
itself and the aliens watch too much TV!)
They create a program for it that encodes
the rules of Chinese. The machine is
dispatched to Earth. Claiming to have
taken a vow of silence, it does not speak
(the aliens weren't hot on accents). It

reads Chinese characters written by the
earthlings, then follows the instructions in
its Chinese program that tell it the
Chinese characters to write in response. It
duly has written conversations with all the
earthlings it meets as it wanders the
planet, leaving them all in no doubt that
they have been conversing with a real
human Chinese speaker.

The question is, is that machine monk
really a Mind? Does it really understand
Chinese or is it just simulating that
ability?

5cs4fneecs.qmul.ac.uk

working with meaning. However there
can't be a way of telling that by talking to
one as otherwise it could have been used
to tell that the machine monk wasn't a
mind.

Imagine then, there has been a nuclear
accident and lots of babies are born with
a genetic mutation that makes them
zombies. They have no mind so no ability
to understand meaning. Despite that they
act exactly like humans: so much so that
there is no way to tell zombies and
humans apart. The zombies grow up,
marry and have zombie children.

Presumably zombie brains are simpler
than human ones – they don't have
whatever complication it is that
introduces minds. Being simpler they
have a fitness advantage that will allow
them to out-compete humans. They won't
need to roam the streets killing humans
to take over the world. If they wait long
enough and keep having children, natural
selection will do it for them.

The zombies are here

The point is it could have already
happened. We could all be zombies
but just don't know it. We think we
are conscious but that could just be an
illusion – another simulation. We have no

way to prove we are not zombies and
if we could be zombies then Searle's
assumption that we are different to
machines may not be true. The Chinese
room argument falls apart.

Does it matter?

The arguments and counter arguments
continue. To an engineer trying to build
an artificial intelligence this actually
doesn't matter. Whether you have built
a Mind or just something that exactly
simulates one makes no practical
difference. It makes a big difference
to philosophers, though, and to our
understanding of what it means to be
human.

Let's leave the last word to Alan Turing.
He pointed out 30 years before the
Chinese room was invented that it's
generally considered polite to assume
that other humans are Minds like us (not
zombies). If we do end up with machine
intelligences so good we can't tell they
aren't human, it would be polite to extend
the assumption to them too. That would
surely be the only humane thing to do.

symbols themselves. We understand what
the symbols mean. The Chinese room is
supposed to show you can't get meaning
by pushing symbols around. As any future
artificial intelligence will be based on
programs pushing symbols around they
will not be a Mind that understands what
it is doing.

The zombies are
coming

So is this argument really cast iron? It has
generated lots of debate, virtually all of it
aiming to prove Searle wrong. The
counter-arguments are varied and even
the zombies have piled in to fight the
cause – philosophical ones at least.

What is a philosophical zombie? It's just a
human with no consciousness, no mind.
One way to attack Searle's argument is to
attack the assumptions. That's what the
zombies are there to do. If the
assumptions aren't actually true then the
argument falls apart. According to Searle
human brains do something more than
push symbols about – they have a way of

Could zombies lurch
to the rescue?

In times gone by, pictograms formed much
of human language. The ancient Egyptians
used hieroglyphs, pictures representing
words and ideas. As the centuries passed,
humanity started to make language more
abstract. Rather than a picture of a cat,
they came up with agreed ways that certain
symbols could represent the same thing
and that’s how CAT came to be. In the
dawn of computers, humans used symbols
to tell the machines what to do. “LET X=
1.0” told the electronics to set up a place
in its memory called X and fill that slot with
the number 1.0. The computer would then
dutifully comply; X was 1.0 until it was told
otherwise.

The idea of using a special language to
control what a computer does isn’t new;
musicians have been using something
similar to control orchestras. The musical
score, all those funny looking symbols on
those long lines, told the players what notes
to strike, when and for how long. From
simple graphical language music was born
and could be transferred so others could
play and enjoy.

But what if you had the chance to make up
your own computer language? You could
tell a machine what to do, like how to play
a tune. Enter TuneTrace, a smartphone app
that lets you explore this in a fun and easy
way. TuneTrace takes a line drawing,
analyses it and turns your doodle into
music. This free app gives you a chance to
explore your own musical creativity but also
to come up with a way to express your
creativity by simply making a drawing. You
can share your drawing with others, who
can add their own bits and make even
more music.

So what will you draw and how will it
sound? Download it from the App Store
for free and try it!

6 www.cs4fn.org

Play your
drawings
with
TuneTrace

Tunetrace turns your
doodle into music

Find more free apps
from Queen Mary at
www.qappsonline.com

Language isn’t just for humans.
Businesses need to talk to each
other too. Thanks to computer
scientists they have their own
languages to do it, ones that
make them dance.

Normally if we say something like
“Simpers, Snype and Co. is talking to
Bongle and Bingers Inc.” we mean people
from the two companies are talking.
Nowadays we could also actually mean
what we said – the companies are doing
the talking. The web has given us email
and social networking. It’s given industry
a whole new way of working together too.
Using computers the businesses can talk
without having to wait for those slow
people to get round to it.

Rules of engagement

Suppose, to deal with the orders that
customers have made through Bongle’s
website, Bongle need to buy more widgets
from Simpers. Rather than a person
picking up the phone, nowadays the
computers will just arrange it all
automatically. To do that they need to
talk and that means they need languages.

Before they can start to collaborate the
two companies need to agree the rules of
engagement – in what circumstances will
they work together, how will it be done,
and what are the exact responsibilities
that each is taking on? In the past the
rules have tended to be written in English
so people can follow them. The trouble
with English is it’s ambiguous. That’s why
there is so much work for lawyers! And if
one company thought they’d agreed to
supply widgets in one size but the other
believes the agreement was for whatever
size is needed, there’s going to be
problems.

Dancing the dance

Enter ‘Web Services Choreography’. A
Choreography in this computing sense
doesn’t mean managers have to learn to
do the tango with each other. It’s just a
set of agreed rules that tie down exactly
what each company will do and when –
just like a dance choreography does for
dancers. Instead of fixing steps it fixes
things like what messages will be sent, by
who and when, each time the companies
involved collaborate. What message does
Simpers’ computer need to send to make
that order? What does Bongle's computer
have to do to confirm it?

To make it work with computers these
rules have to be specified in a precise
language. One such language is Scribble,
invented by Kohei Honda of Queen Mary,
University of London. It is inspired by yet
another language – a mathematical
language called the pi calculus. Because
of its basis in maths, once the rules are
set down, mathematical tools can be used
to check important things about them. For
example, if they follow the rules, is it
possible for both computers to end up
sitting waiting forever for the other one to
do something? Computers can be very
patient if that is what their rules tell them
to do! If they did it could be disastrous
for the companies concerned.

Are we doing it right?

The beauty of choreography is that once
the rules of engagement are agreed, and
each company is happy with the Scribble
version, then they can each get on and
implement it on their own computers.
Each doesn’t have to worry about how
the other company is making their own
computers do it. The two companies can
even write programs to do their bit in
completely different programming
languages. They can be confident, despite
this, that their two computers will be
following the agreed rules of engagement
and so will be able to work together. This
can even be checked mathematically
against the original Scribble rules too.

Business is sometimes treated as war, but
everyone can benefit if companies work
together rather than against each other.
Then, at least for computer scientists,
it’s better to think of it as a dance.

7cs4fneecs.qmul.ac.uk

Making
business dance

It doesn’t mean
managers have to
learn to do the tango

www.cs4fn.org8

A (com)pressing
problem by Paul Curzon

A key computer science breakthrough that
we all rely on is being able to shrink
repetitive things down. Whether it's
streaming music or movies, sharing photos
or just words, if we are to send large
amounts of data across the Internet, we
need to do it as efficiently as possible.
How? The clue is in those children's
songs. Like the songs, most data is highly
repetitive and we can make use of that.
Before sending a file we can look for
repetition and shrink it. It's called data
compression. By sending less we can do it
quickly.

One of the simplest ways to compress data
is to look for sequences of repeated things
and just replace them with one copy
together with the number of times it
appears. This is obviously useful for
compressing images. At its simplest, a
digital image is just a long series of
symbols indicating the colours of each
pixel. Since colours tend to stick together
in images, the same symbols are likely to
appear together a lot. Take that beach
photo I took on holiday. It has a bright
blue sky with only a wisp of cloud.
Suppose blue is represented by B and
white by W then the top line of pixels
might be something like

BBBBBBBBBBBBBBBBWWWWBBBBBBBB

Rather than storing or sending all those
characters, we could instead just send:

16B4W8B

It says there is a run of 16 Bs followed by
4 Ws and then 8 Bs. The original 28
characters have been compressed to only
7 without losing any information at all.
This kind of compression is called ‘run-
length encoding’.

Wonderful. So let’s look what happens
when we apply it to a song.

"The wheels on the bus go round and round,
round and round,
round and round.
The wheels on the bus go round and round,
all day long."

Let's look at one very repetitive line for
starters:

"round and round"

Applying run-length encoding we get the
new version:

1r1o1u1n1d1 1a1n1d1 1r1o1u1n1d

Oh – there's a problem! Even though it is
very repetitive, there aren't actually any
runs of repeated letters at all. Run-length
encoding makes it twice as big not
smaller!

The problem is that it is words that are
repeated not adjacent characters. We
could come up with a way to compress
based on repeated words, but let's not give
up on run-length encoding yet. Maybe we
can improve things.

It turns out we can using a method
dreamed up by David Wheeler and Mike
Burrows. The way it works is, surprisingly,
to first mix all the letters up and then
compress the result. The idea is to get as
many common letters together before we
compress so that run-length encoding can
work as well as possible. We have to be
cunning in the way we do it though as we
need to be able to get the original
message back.

The way we do it is to rotate the phrase by
one letter - that is moving a letter from
the front to the end. "round_and_round"
becomes "ound_and_roundr" (where we've
used underscores to make the spaces
visible). We do that over and over, one
rotation at a time, until we get back to the
original phrase. For round and round that
gives us 15 new phrases:

Next we put these into alphabetical order
(taking spaces as before 'a' in the
alphabet).

I have a toddler. I knew I'd signed up for some horrible stuff
when we had him: Pooey nappies? Yes. Sleepness nights?
Tantrums? Of course. But singing! I never expected so much
singing! We sing at his playgroup, we sing watching
CBeebies, we even sing at his swimming club.
If you don't like singing it's all rather boringly repetitive.
Whether it's Ten Green Bottles, Five Little Speckled Frogs,
Row, Row, Row Your Boat or The Wheels on the Bus, you end
up singing the same things over and over...and over and over
again. If only we could cut some of the repetition! That
sounds like a job for some computer science.

round_and_round
ound_and_roundr
und_and_roundro
nd_and_roundrou
d_and_roundroun
_and_roundround
and_roundround_
nd_roundround_a

d_roundround_an
_roundround_and
roundround_and_
oundround_and_r
undround_and_ro
ndround_and_rou
dround_and_roun

_and_roundround
_roundround_and
and_roundround_
d_and_roundroun
d_roundround_an
dround_and_roun
nd_and_roundrou
nd_roundround_a

ndround_and_rou
ound_and_roundr
oundround_and_r
round_and_round
roundround_and_
und_and_roundro
undround_and_ro

cs4fneecs.qmul.ac.uk 9

Finally, we take the last letter of each
of these to give the new phrase.

dd_nnnuaurrd_oo

That is the message we compress using
run-length encoding. We end up with

2d1_3n1u1a1u2r1d1_2o

It's better than before. Still longer than
the original, but let's not worry about that
for a moment. Let's worry about whether
we can get our original message back
given all this shuffling! The answer is yes,
as long as you know what the last letter of
the original message was. An easy way to
do that is just to add a special character
at the end of the message, then just
rotate, sort and compress it with the rest.
You can then reverse each step (maybe
you can work out how!)

Why does all this shuffling help, though?
The key is that it groups letters that are
part of the same repeated pairs together.
By sorting the rotated phrases we are
grouping those versions of the phrase that
start with the same letter. Now think about
the last letters. Because we've only done
rotations, they are the letters that in the
original came just before the first ones.
Take the following phrase starting with 'd'.

d_and_roundroun

It ends in an 'n' because the 'd' was
originally in the word 'round', where an 'n'
came before the 'd'.

If we look at the other phrases that start
with 'd', we see there are actually three
that end with 'n'.

d_and_roundroun
d_roundround_an
dround_and_roun

That's because in this phrase, the letters
'n' and 'd' appear repeatedly together:
twice in the word 'round' and once in
'and'. So because there are three n-d pairs
in the original phrase, we end up with a
run of three 'n's to compress when we take
the last letters.

The same happens with every common
pair of letters. The result is that run-length
encoding now has lots of runs to work on
where before there were none.

We still ended up with something longer
than the original though. That's just
because the phrase was so short. With
longer phrases it gets much better. Try it
for yourself with the longer fragment:
"round and round, round and round." It is
compressed to only 22 characters even

though it is more than twice as long as the
shorter one we just looked at. The whole
verse compresses from 131 to 99
characters. We are getting a big
improvement.

With a little bit of computer science we
have shortened a long, boringly repetitive
song. Much better. So why isn't my toddler
impressed when I sing it? On the other
hand, streaming of movies or music can
only be done quickly enough to play in
real time because the data has been
compressed first. It's therefore the same
kind of clever compression that allows him
to watch streamed versions of Thomas the
Tank Engine. So while he may not want to
sing a compressed song, he ought to sing
the praises of compression algorithms.

World War II. Steganography has taken
more bizarre forms over the years though
– an Ancient Greek slave had a message
tattooed on his shaven head warning of
Persian invasion plans. Once his hair had
grown back he delivered it unnoticed.

Digital communication opens up new
ways to hide messages. Computers store
information using a code of 0s and 1s.
Each 1 or 0 is called a bit.
Steganography is then about finding
places to hide those bits. A team of
Polish researchers led by Wojciech
Mazurczyk have now found a way to hide
them in a Skype conversation.

When you use Skype to make a phone
call, the program converts the sounds you
make to a long series of bits. They are
sent over the Internet and converted back
to sound at the other end. At the same
time, bits stream back from the person
you are talking to, containing the sound
of their voice. Data transmitted over the
Internet isn’t sent all in one go, though.
It’s broken into packets: a bit like taking
your conversation and tweeting it one line
at a time.

Commando tactics

Why? Imagine you run a crack team of
commandos who have to reach a target
in enemy territory to blow it up – a stately
home where all the enemy’s generals are
having a party. If all the commandos
travel together in one army truck and
something goes wrong along the way,
probably no one will make it. The mission
would be a disaster. If, on the other
hand, the commandos each travel
separately and meet once they arrive,

the mission is much more likely to be
successful. If a few are killed on the way
the rest can still complete the mission.

The same applies to a Skype call. Each
packet contains a little bit of the full
conversation and each makes its own way
to the destination across the Internet. On
arriving there, they reform into the full
message. To allow this to happen, each
packet includes some extra data that
says, for example, what conversation it is
part of, how big it is and also where it fits
in the sequence. If some don’t make it
then the rest of the conversation can still
be put back together without them. As
long as not too much is missing, no one
will notice.

The sound of silence

Skype does something special with its
packets. The size of the packets changes
depending on how much data needs to be
transmitted. When someone is talking,
each packet they send carries a lot of
information. When that person is listening
Skype sends shorter packets from their
end, because they are only transmitting
silence. The Polish team realised they
could exploit this for steganography. Their
program, SkyDe, intercepts Skype packets
looking for short ones. When SkyDe finds
those short packets, they are replaced
with packets holding the data from the
covert message. At the destination
another copy of SkyDe intercepts them,
extracts the hidden message and passes
it on to the intended recipient. As far as
Skype is concerned some packets just
never arrive.

Cryptography is the science of making
messages unreadable. Spymasters have
used secret codes for a thousand years or
more. Now cryptography is a part of
everyday life. It’s used by the banks every
time you use a cashpoint and by online
shops when you buy something over the
Internet. It’s used by businesses that
don’t want their industrial secrets
revealed and by celebrities who want to
be sure that tabloid hackers can’t read
their texts.

Who called who?

Cryptography stops messages being read,
but sometimes just knowing that people
are having a conversation can reveal too
much. Knowing a football star is
exchanging hundreds of texts with his
teammate’s girlfriend suggests something
is going on, for example. Similarly, the
American CIA chief David Petraeus,
whose downfall made international news,
might have kept his secret and his job if
the emails from his lover had been
hidden. David Bowie kept his 2013
comeback single Where Are We Now? a
surprise until the moment it was released.
The dramatic surprise helped make the
single a hit. But the secret could have
been spoiled months before if music
journalists had noticed Bowie having more
conversations with his record label.

Sending messages
gets hairy

That’s where steganography comes in –
the science of hiding messages so no one
even knows they exist. Invisible ink is one
form of steganography. It was used, for
example, by the French resistance in

Hiding in
Skype

www.cs4fn.org10

Computer science isn’t just about using language, sometimes
it’s about losing it. Sometimes people want to send messages
so secret that no one even knows the messages exist. A great
place to lose language is inside a conversation.

Who’d have thought
the sound of silence
would be so useful

A good hiding

There are several properties that matter
for a good steganographic technique. One
is its bandwidth: how much data can be
sent using the method. Because Skype
calls contain a lot of silence SkyDe
has a high bandwidth: there are lots
of opportunities to hide messages. A
second important property is obviously
undetectability. The Polish team’s
experiments have shown that SkyDe
messages are very hard to detect. As
only packets that contain silence are
used and so lost, the people having the
conversation won’t notice and the Skype
receiver itself can’t easily tell because
what is happening is no different to a
typical unreliable network. Packets go
missing all the time. Because both the
Skype data and the hidden messages
are encrypted, someone observing the
packets travelling over the network
won’t see a difference – they are all just
random patterns of bits. Skype calls are
now common so there are also lots of
natural opportunities for sending
messages this way – no one is going to
get suspicious that lots of calls are
suddenly being made.

All in all, SkyDe provides an elegant new
form of steganography. Invisible ink is so
last century (and tattooing messages on
your head is very last millennium). Now
the sound of silence is all you need to
have a hidden conversation.

cs4fneecs.qmul.ac.uk 11

www.cs4fn.org12

Umm, ahh…
understanding

Computer scientists once believed that if
they designed better ways for humans to
communicate with computers (good
‘human-computer interaction’) then they
would make it easier for people to
communicate with each other too (good
‘human-human interaction’). But you
don’t necessarily make it easy for two
people to talk just by making it easy for
them both to talk to a computer. You need
to understand what makes human
conversation work and design for that.

Terrible texting

Text messaging is a good example of how
things aren’t always as obvious as you’d
think. The original text messaging system
was horrible human-computer interaction.
It was intended just as a way for
engineers to test the connections. You
just wouldn’t design a real system where
people used a numeric keypad to type
words: it’s terrible! Despite that millions
of people used it. In fact lots of people
actually send more text messages than
they have face-to-face conversations these
days. Poor human-computer interaction
made wonderful human-human
interaction. Why? Because (by accident)
texting has just the right properties to be
great at what it’s used for. It doesn’t
interrupt you like a phone or even face-to-
face chat, so is great for keeping in touch
while you are busy. You can also keep

several different chat conversations going
in parallel. Another plus is that texts are
short. Talk to someone and you have to go
through a lot of social niceties – you can
say goodbye half a dozen times on the
phone before you actually manage to put
the phone down on a friend! Texts avoid
all that.

Splurging sentences

So what is so subtle about human-human
interaction? When we talk to people face
to face, we don’t think up whole
messages and then just splurge out the
whole thing (as we do in an email). Watch
people chatting. Listen for all the umms
and ahs, the pauses, the half said
sentences, the corrections, the “ok”s and
“ah ahh”s from the other person that
keep the conversation going. Real
conversations don’t go…

“This trouble I had in understanding not
only what others said to me, but also what
I said to them”

They are more like:
You: “This prob…err…trouble I had…”
Listener: “uhu”
You: “in under umm in under…”
Listener: “understanding?”
You: “yes”
Listener: “go on”
…

Meaning in mess

It looks a mess, but it all actually matters
to make conversations work. It’s about
being sure you understand each other.
There’s more too. Now look for the nods
and smiles, the blank faces, turns of the
head, the waving hands, the pointing that
go with all the “umms” and “ahhs” and
interruptions. The listener’s interruptions
show they are following. Subtle changes
in their expression might make you
rethink what you were saying. Some of
that does come across on a small video
image of a person’s head and shoulders
but not all.

Subtle space

One of the key things missing in a video
conference call is 3-D space itself. When
people are working together on a problem
they use the space around them as part of
this subtle communication. A person may
briefly glance to another for confirmation:
confirmation that comes with a tiny nod
of the head. If all you have is a series of
images lined up on your screen no-one
can tell who is being glanced at in the
way you can round a table. Similarly
human gestures aren’t just about sliding
your fingers about on a touch-screen. In
deep conversation we make shapes in the
air around us with our hands as we talk.
Point to that place later in the
conversation and people will know what
we are talking about, just as it can be
clear we mean Jo not Laura when we just
say ‘she’.

Good, bad (and ugly?)

All this doesn’t mean video calls are
rubbish. It just means you need to
understand what different technologies
are good and bad at and use them

Video calls have finally made it. No longer a futuristic dream, anyone
can now use Skype. Why bother with face-to-face meetings any
more? Just stay in bed and teleconference in to work! Why can’t life
be that simple for once? It turns out that face-to-face is still better, at
least part of the time – video streams are still missing something
important.

cs4fneecs.qmul.ac.uk 13

appropriately. Email is great for sending
information but terrible for anything with
emotion – hence the flame wars that
result. Phone calls are great for one-to-
one conversations, but bad if you just
want to communicate a quick message
like “Sorry I’m running late”. Video calls
do let you see each other’s expressions
and the things you are talking about. They
can be good for 2-way conversations.
What we are still missing though is a
technology that is as good as actually
sitting round a table working as a team: a
technology that doesn’t lose all the messy
subtlety of human conversations. Video
calls aren’t it. Maybe you can invent a
technology that is.

This article is based on a keynote talk given
by Pat Healey of Queen Mary, University of
London, June 2013. (cs4fn was there
watching it live!)

‘comments’. Remove the comments and
the recipe will still work. We need a clear
way to show when a comment starts and
ends. We will start them with a special
symbol ‘/*’ and end them with ‘*/’.

RECIPE Hummus and Tomato Pasta ()
{
/* Serves 2
This is a very quick 20-minute after
work dish.

*/
…
}

Variable storage

What comes next in a recipe is usually a
list of ingredients. The idea is to list
everything you need so you can have it all
ready before you start. I often have a
problem following recipes, though, as they
don’t list absolutely everything. Mid-
recipe I might suddenly find I need a
frying pan…when mine is crusted with
burnt cheese sauce from last night! To
avoid that, let’s list all the pans we need
too. For our recipe we need a frying pan
and a saucepan.

Something used to store things (like pans
do) in a program is called a ‘variable’.
Program variables hold things like
numbers. The equivalent of the
ingredients list ‘declares’ the variables.
Declarations give each variable a unique
name used to refer to it and also give
each a ‘type’ – is it a saucepan or a frying
pan we need? To be clear about when a
declaration ends we add in some
punctuation. Programming languages tend
to use a semicolon for that – it’s a bit like
a full stop in English.

Saucepan pan1;
Fryingpan pan2;

www.cs4fn.org14

Programmers are the master chefs of the
computing world – except the recipes they
invent don’t just give us a nice meal, they
change the way we live.

Programs are very similar to recipes. They
both give instructions that, if followed,
achieve something. There is a difference
between them, though, and it has to do
with language. When chefs invent recipes
they write them out in human languages
like English. Programmers write programs
in special languages. Why’s that? It’s all
about being precise enough to be sure
exactly the same thing happens every
time. Recipes are often ambiguous which
is why when I follow one it sometimes
goes wrong. Programs tie down every last
detail.

Let’s apply some ideas from programming
languages to making meals. One of my
favourite recipes is a hummus-based
pasta dish (see box) so we’ll use that.

Structure it!

The first thing to notice about a recipe
book is there is a clear structure. Each
recipe is obviously separate from the
others. Each has a title and a brief
description of how it might be used. Each
has an ingredients list and then a series
of steps to follow. Programs follow a
similar structure.

Cookery books use page layout to show
their structure. Programmers use
language: grammar, symbols and
keywords. A keyword is a word that means
something special. Once you have
decided a word is a keyword you only ever
use it for that purpose.

Let’s invent a keyword RECIPE to mean
we’re starting a new recipe. The only time
that word will appear in our recipes is to
start a new recipe. What follows it will
always be the name of the recipe. We will
also need to know when the name ends.
To make that clear we will use a special
symbol made up of open and close
brackets ().

We also want to be absolutely sure what is
part of this recipe and what isn’t. We will
use curly brackets: everything between
the brackets is part of the named recipe.

RECIPE Hummus and Tomato Pasta ()
{
…
}

No comment?

Recipes usually include a brief
description that isn’t part of the actual
instructions. It is just there to help
someone understand when you might use
the recipe. Programs have descriptions
like this too. Programmers call them

How is a computer program like a recipe? Paul Curzon explains,
and as a bonus, tells you how to cook a quick pasta dish.

A recipe for
programming

Hummus and
Tomato Pasta
Serves 2
This is a very quick 20-minute after work
dish.

Olive oil
1 teaspoon of whole cumin seeds
1 large chopped onion
400g chopped plum tomatoes
200g hummus
150g pasta

1. Add the pasta to a large pan of boiling
water. Simmer for 10 minutes.

2. Fry the cumin in the olive oil for a few
minutes. Add the onions and fry
gently.

3. Stir in the tomatoes and the hummus
and leave to simmer for 5 minutes.

4. Drain the pasta and serve.

This says that in the rest of the recipe
when we say pan1 (the variable name) we
mean a particular pan: a saucepan (its
type). When we say pan2 we mean a
particular frying pan.

New assignment

We will make a distinction between things
to hold stuff, like pans (variables) and the
actual ingredients that go in them:
‘values’. We will also follow the TV chefs
and start by setting out all the ingredients
in little dishes at the start so they are at
hand – and make that part of the
instructions.

We will need to declare a dish to hold
each ingredient, giving its type and giving
the dish a name. At the same time we will
say what should be put in it before the
recipe proper is started. We will use an ‘=’
symbol to mean put something in a
variable (i.e., dish or pan). In programs,
this action of putting something in a
variable is called ‘assignment’. So, for
example, we will declare that we need a
dish to hold the hummus (called
hummusDish). We assign 200g of
hummus to it.

Dish hummusDish = 200g hummus;

We are now ready for the recipe proper.
We can use assignment as a precise way
of moving things from one place to
another too. So if we say, for example:

pan2 = oilDish;

We mean empty the contents of the dish
of oil into the frying pan. Programs are
slightly different here, as when they do an
assignment they don’t move things from
one place to the other, they copy it.
That would be like having a di sh that
automatically refilled itself whenever it
was emptied.

Often we want to add to whatever is
already in a pan. Programmers leave
nothing to doubt and say explicitly that
is what they mean:

pan2 = pan2 + onionDish;

This tells us to mix what is in the onion
dish with what is in the frying pan, and
then leave the result in the frying pan. We
will use the + symbol to mean add together
and stir. (continued on the next page)

cs4fneecs.qmul.ac.uk 15

Assignment does NOT
move things around,
it makes new copies

www.cs4fn.org16

Methods in my
madness

So far all we’ve done is put
ingredients in things and copied them
around. To make a meal we need to
do various basic cooking things like
heat a pan or drain a pan. Rather than
spell out every step of how you do that
in every recipe, we will use a short
hand. We create mini-recipes that say
how to do it and just refer to them by
name. They are often called ‘methods’
by programmers. Each is written out
just like our recipe. In fact to a
programmer our recipe is a method
too. When we want to use it we just
give its name followed by any extra
information needed. For example to
heat a pan, we need to know which
pan, how high a heat and for how
long. We write, for example:

Heat (pan1, medium, 12 minutes);

This format helps make sure we don’t
miss something (like the time for
example). We need similar methods
for draining a pan and serving the
meal. We won’t give the actual
instructions here. In a full program
they would be written down step-by-
step too and not left to chance.

Time to do it right

We have come up with a language for
recipes similar to the ones used for
programming. We’ve used symbols,
keywords and very precise punctuation
– the language’s ‘syntax’ – to help us

be precise. On its own that’s not enough –
each part of the language has to have a
very clear meaning too – the language’s
‘semantics’. Together they make sure in
following a recipe we know exactly what
each step involves. There is then less

scope for a cook (or computer) to get it
wrong. Computers, of course, have no
intelligence of their own. All they can
do is exactly follow the instructions
someone wrote for them (a bit like me
cooking).

A recipe for
programming
(continued from page 15)

Here’s what our complete recipe looks like as a program.
RECIPE Hummus and Tomato Pasta ()
{

/* Serves 2. This is a very quick after work dish.
It only takes about 20 minutes from start to finish. */

Saucepan pan1;
Fryingpan pan2;

/* Ingredients */ Dish oilDish = 1 tablespoon of olive oil;
Dish cuminDish = 1 teaspoon of whole cumin seeds;

Dish onionDish = 1 large onion, chopped;
Dish tomatoDish = 400g chopped plum tomatoes;
Dish hummusDish = 200g hummus;

Dish pastaDish = 150g pasta;
Kettle kettle = 500ml boiling water;

/* Cook the pasta */ pan1 = kettle + pastaDish;
Heat (pan1, high, 2 minutes);
Heat (pan1, medium, 10 minutes);

/* Make the sauce */ pan2 = oilDish + cuminDish;
Heat (pan2, high, 2 minutes);

pan2 = pan2 + onionDish;
Heat (pan2, medium, 5 minutes);

pan2 = pan2 + tomatoDish + hummusDish;
Heat (pan2, low, 5 minutes);

/* serve */ Drain (pan1);
Serve (pan1, pan2);

}

cs4fneecs.qmul.ac.uk 17

Scilly
cable
antics
Autumn 1869. There were great
celebrations as the 31 mile long
telecommunications cable was finally
hauled up the shore and into the
hut. The Scilly Isles now had a direct
cable communication link to the
mainland. But would it work? Several
tests messages were sent and it was
announced that all was fine. The
journalists filed their story. The
celebrations could begin.

Except it didn’t actually work! The
cable wasn’t connected at all. The
ship laying the cable had gone off
course. Either that or someone’s
maths had been shaky. The cable
had actually run out 5 miles off the
islands. Not wanting to spoil the
party, the captain ordered the line to
be cut. Then, unknown to the crowd
watching, they just dragged the cut
off end of the cable up the beach
and pretended to do the tests. The
Scilly Isles weren’t actually
connected to Cornwall until the
following year.

Honky
herring
Honky
herring
If you think about it, humans are a
long tube with legs and arms. We
speak from our mouths and the other
end of the tube that things come out
of, well, that has other uses. But
what if emanations from that other
end could be used as a way of
communication? There is no
scientific evidence to date that
humans use their bottom to
communicate, despite what you
might think. But fish do, perhaps. A
Canadian study showed that herring
seem to use the breaking of wind
underwater to communicate with
each other, and it wasn’t just gas
caused by what they had eaten. It’s
an odd way to communicate perhaps,
but could explain why fish don’t eat
baked beans.

A duck, a horse and a chicken
walk onto a farm… It sounds
like the start of a bad joke but
it’s actually the start of a bit of
mind mystery as you accurately
predict the order your spectator
will line up the animals in
advance. To dig up more on
this fun magic trick, look on
the magazine+ section of our
website, www.cs4fn.org.

Farming
the future

18

The last speaker

Why do languages die?

The reason smaller languages die are
varied, from war and genocide, to disease
and natural disaster, to the enticement of
bigger, pushier languages. Can technology
help? In fact global media: films, music
and television are helping languages to
die, as the youth turn their backs on the
languages of their parents. The Web with
its early English bias may also be helping
to push minority languages even faster to
the brink. Computers could be a force for
good though, protecting the world’s
languages, rather than destroying them.

Unicode to the rescue

In the early days of the web, web pages
used the English alphabet. Everything in a
computer is just stored as numbers,
including letters: 1 for ‘a’, 2 for ‘b’, for
example. As long as different computers
agree on the code they can print them to
the screen as the same letter. A problem
with early web pages is there were lots of
different encodings of numbers to letters.
Worse still only enough numbers were set
aside for the English alphabet in the
widely used encodings. Not good if you
want to use a computer to support other
languages with their variety of accents and
completely different sets of characters.
A new universal encoding system called
Unicode came to the rescue. It aims to
be a single universal character encoding –
with enough numbers allocated for ALL
languages. It is therefore allowing the web
to be truly multi-lingual.

Languages are spoken

Languages are not just written but are
spoken. Computers can help there, too,
though. Linguists around the world record
speakers of smaller languages,
understanding them, preserving them.
Originally this was done using tapes. Now
the languages can be stored on
multimedia computers. Computers are not

just restricted to playing back recordings
but can also actively speak written text.
The web also allows much wider access to
such materials that can also be embedded
in online learning resources, helping new
people to learn the languages. Language
translators such as BabelFish and Google
Translate can also help, though they are
still far from perfect even for common
languages. The problem is that things do
not translate easily between languages –
each language really does constitute a
different way of thinking, not just of
talking. Some thoughts are hard to even
think in a different language.

AI to the rescue?

Even that is not enough. To truly preserve
a language, the speakers need to use it in
everyday life, for everyday conversation.
Speakers need someone to speak with.
Learning a language is not just about

learning the words but learning the culture
and the way of thinking, of actively using
the language. Perhaps future computers
could help there too. A long-time goal of
artificial intelligence (AI) researchers is to
develop computers that can hold real
conversations. In fact this is the basis of
the original test for computer intelligence
suggested by Alan Turing back in 1950...if
a computer is indistinguishable from a
human in conversation, then it is
intelligent. There is also an annual
competition that embodies this test: the
Loebner Prize. It would be great if in the
future, computer AIs could help save
languages by being additional everyday
speakers holding real conversations, being
real friends.

Too late?

The problem is that time is running out.
Human standard translation is still a way
off. Artificial intelligences that can have
real human conversations are an even
more distant dream. The window of
opportunity is disappearing. By the time
the AIs arrive the majority of human
languages may be gone forever. Let’s hope
that computer scientists and linguists do
solve the problems in time, and that
computers are not used just to preserve
languages for academic interest, but really
can help them to survive. It is sad that the
last living creature to speak Atures was a
parrot. It would be equally sad if the last
speakers of all current languages bar
English, Spanish and Chinese say, were
computers.

The languages of the world are going extinct at a rapid rate. As the
numbers of people who still speak a language dwindle, the chance of it
surviving dwindles too. As the last person dies, the language is gone
forever. To be the last living speaker of the language of your ancestors
must be a terribly sad ordeal. One language's extinction bordered on
the surreal. The last time the language of the Atures, in South America
was heard, it was spoken by a parrot: an old blue-and-yellow macaw,
that had survived the death of all the local people.

www.cs4fn.org

Time is running
out...by the time the
AIs arrive, the
majority of
languages may be
gone forever.

cs4fneecs.qmul.ac.uk 19

A funny thing
happened on the
way to the computer

Computer generated jokes can do more
than give us a laugh. Human language in
jokes can often be ambiguous: words can
have two meanings. For example the word
'bore' can mean a person who is
uninteresting or could be to do with drilling
... and if spoken it could be about a male
pig. It's often this slip between the meaning
of words that makes jokes work (work that
joke out for yourself). To be able to
understand how human-based humour
works, and build a computer program that
can make us laugh will give us a better
understanding of how the human mind
works ... and human minds are never
boring.

Many researchers believe that jokes come
from the unexpected. As humans we have
a brain that can try to 'predict the future'.
For example, when catching a ball, our
brains have a simple, learned mathematical
model of the physics so we can predict
where the ball will be and catch it. Similarly
in stories we have a feel for where it should
be going, and when the story takes an
unexpected turn, we often find this funny.

The 'shaggy dog story' is an example; it's a
long series of parts of a story that build our
expectations, only to have the end prove us
wrong. We laugh (or groan) when the
unexpected twist occurs. It's like the ball
suddenly doing three loop-the-loops then
stopping in mid-air. It's not what we expect.
It's against the rules and we see that as
funny.

Artificial intelligence researchers who are
interested in understanding how language
works have started to look at jokes as a way
to understand how we use language.
Graham Richie is one such researcher, and
funnily enough he presented his work at an
April Fools' Day Workshop on
Computational Humour. Richie looked at
puns: simple gags that work by a play on
words, and created a computer program
called JAPE that generates jokes.

How do we know if the computer has a
sense of humour? Well how would we know
a human comic had a sense of humour?
We'd get them to tell a joke. Now suppose
that we had a test where we had a set of
jokes, some made by humans and some by
computers, and suppose we couldn't tell
the difference? This is called a Turing Test
after the computer scientist Alan Turing. If
you can't tell which is computer generated
and which is human generated then the
argument goes that the computer program
must, in some way, have captured the
human ability.

So let's finish with some one-liners (and
a test). Which of the following is a joke
created by a computer program following
Richie's theory of puns, and which is a
human's attempt? Will humans or
machines have the last laugh on the test?

1) What's fast and wiry?... An aircraft
hanger!

2) What's green and bounces?... A spring
cabbage

Laugh and the world laughs with you, they say, but what if you're a
computer? Can a computer have a sense of humour?

Can you tell which
joke is the human's
and which the
computer's?

Find out which was which by
going to the magazine+ part
of the cs4fn website:
www.cs4fn.org

We all know that eventually
everyone dies, but it’s what
we do with our life that
counts. Computer scientists
are starting to look at ways
that they can make death
just that little bit different,
reshaping the one fixed
point in human existence,
and sometimes in rather
strange ways. RIP can go
from ‘Rest In Peace’ to
‘Right, Investigate
Possibilities’!

Twitter from beyond

Social networks are a vital part of many
people’s lives, but what happens when
you’re dead? Do your tweets need to stop?
Does the world need to lose your views?
Well no, according to the LiveOn project.
It aims to create an artificial intelligence
program that learns how you tweet, and the
sorts of things you tweet about, like and
dislike, and can continue to mimic your
online presence even after you depart this
earth. As their slogan says, “When your
heart stops beating, you'll keep tweeting”.

RIP = Replicating Individuals Preferences

Grave situations

When Chinese computer fan Hu
Chuang died, his parents decided to
commemorate his love of computing in
a novel way. His headstone was carved
in the form of a computer and monitor. It
even included a mouse. This isn’t the first
time that graves have incorporated a love
of technology. There are headstones that
carry QR codes you can scan to be taken
to a memorial website to find out more
about the occupant. But to get even more
personal, people have been buried with
their mobile phones. In the days before

Back (page)
from the dead

www.cs4fn.orgFor a full list of our university partners see www.cs4fn.org

cs4fn is edited by Paul Curzon, Jonathan Black and Peter McOwan.
cs4fn is supported by Google.

wireless, some were buried with phone
lines running to their coffins, in case of
premature burial. They never called back
though. Wonder why…

RIP = Really, I’ve Passed?

Dead actors: I’ll be
back!

Today’s computer graphics can help
dead actors rise again. Research is
being undertaken to generate lifelike
synthespians: synthetic actors who look
and act like the real thing. Using old
movie footage computer systems can
learn the shapes of actors’ faces, their
characteristic movements and even their
voice patterns. This process of digital
cloning is often referred to as
Schwarzeneggerization, after the idea
was first introduced in a book where
a customer asked that Arnold
Schwarzenegger be digitally substituted
to replace other actors in classic films.
There was, not surprisingly, concern about
how these resurrected characters could be
used. The widow of dancer Fred Astaire
and the Screen Actors Guild successfully
lobbied the Californian senate to pass the
Astaire Bill, restricting the use of digital
clones and giving actors legal rights from
beyond the grave.

RIP = Relive Innovative Performances

Google: archive for
the afterlife

We live our lives in the cloud. Our photos,
blogs, and so on live on the Internet,
protected by our passwords. But what
happens to all of this intellectual property
when we die? Google has thought about
this. They are providing a service that will
send your login and password details to a
chosen person in case your online activity
stops for too long, which they consider
indicates you are dead. This way someone
else can look after all your lovely images
and ideas, keeping them safe for the
future

RIP = Repurpose Intellectual Property

Speaking of the
dead

Alexander Graham Bell, widely
recognised as the inventor of the
telephone, has found his voice at last,
over a hundred years after his death.
Bell recorded himself on a wax
cylinder reciting lines from
Shakespeare and delivering what he
may have considered his catchphrase:
"Hear my voice, Alexander Graham
Bell". The recording method involved
speaking loudly into a cone that at the
far end had a needle in contact with a
rotating cylinder covered with soft wax.
The vibrations of the voice, caught and
amplified through the cone, caused
tiny bumps to be impressed in the
wax, capturing the sound but also
allowing playback. The cylinder was
rotated and the bumps, via the needle,
caused appropriate sound in the cone.
However wax decays over time and
Bell’s words were impossible to recover
using anything that contacted the
brittle wax. The solution employed by
the Smithsonian Institution was to use
a laser to read the bumps and turn
them back into sound, exactly the
same technology as is used in DVD
players.

RIP = Repeat In Person

