

Computational Thinking:

Searching to Speak
A Computer Science for Fun Special

Paul Curzon
Queen Mary University of London

In this cs4fn special:

Helping people with disabilities

How can computer science help a person
with locked-in syndrome speak?

Efficiency of Algorithms
How can we tell if one algorithm
is better than another?

Search Algorithms

What is meant by linear search, binary search
and divide and conquer?

Computational Thinking
What is computational thinking and
how Is it used to solve problems?

Searching to Speak

One of the worst medical conditions I can imagine is locked-in syndrome. It
leaves you with all your mental abilities intact, but totally paralyzed except
perhaps for the blink of an eye. Your intelligent mind is locked inside a
useless body, able to sense everything but unable to communicate. It could
happen to anyone, out of the blue, as a result of a stroke. If you wanted to
help people with locked-in syndrome, the obvious thing might be to become a
doctor or nurse, but how could a computer scientist help?
As it happens, we don’t have a cure for locked-in syndrome so there isn’t a lot
medics can do beyond trying to make their patients more comfortable. An
obviously big issue though is to help people with locked-in syndrome
communicate. The answer to what a computer scientist might do then seems
obvious – we could invent some new technology: based on eye tracking
software perhaps. However, with some computational thinking we can give a
more powerful answer than just “we need technology”.
One of the most uplifting books I have read is ‘The Diving Bell and the
Butterfly’. It is the autobiography of Jean-Dominique Bauby, written after he
woke up in a hospital bed with locked-in syndrome. In the book, he describes
life with locked-in syndrome. Bauby did have a way to communicate not only
to write the book but also with medical staff, friends and family. He did it
without any technological help at all. How did he do it?
Put yourself in his position, waking up in a hospital bed. How could you
communicate? How could you write a whole book? You have only a helper
with a pen and paper to write down your ‘words’? All you can do is blink one
eyelid. You can’t otherwise move in any way. That also means you can’t
speak. Can you come up with a way to communicate?
Simple as a, b, c
What you need is some kind of agreed way of turning blinks into letters. Your
first idea might be that one blink means ‘A’, 2 blinks means ‘B’ and so on. The
helper just has to count the blinks and write down the corresponding letter.
In coming up with this idea, we are already doing some computational
thinking. In particular, we’ve done a form of ‘algorithmic thinking’. A
computer scientist would call that method an algorithm: a series of steps to
follow in a given order that achieves some goal (here to communicate letters
and words). The beauty of algorithms is that the steps can be followed without
those involved having any understanding of what they are doing. Here the
helper presumably would know what they were doing and why, but the book
would still get written even if they didn’t. All the helper needs to do is count
blinks and write down the letter. We could give them a table to look up the
letters in so they could do it mechanically without much thought at all. The
beauty of algorithms is that they allow things to be done ‘mechanically’ – and
that means computers can blindly follow the instructions too.
Our algorithm for communicating actually comes in two parts. There is one
part for Bauby to follow (blinking the right number of times) and one for the
helper (count through the number of blinks and write down the corresponding
letter when the blinks stop). In fact computer scientists have a special name

for this kind of algorithm that passes information between two people or
computers – it’s called a ‘protocol’. If both people follow their part of the
protocol then the words Bauby is thinking will end up written on the piece of
paper. If either makes a mistake – losing count for example so not following
the protocol – then the message won’t get through. The great thing about
computers is they don’t get things wrong like that – they follow their
instructions exactly, every time.
Algorithmic thinking is a particular kind of problem solving – one where you
don’t just come up with an answer like ‘42’ but come up with a solution in
terms of steps that others (including a computer) can follow to get answers.
We just came up with a solution like that for Bauby. It doesn’t just tell us what
he is trying to say now, but is a way we can always work out what he wants to
communicate. It sounds pretty slow though. Maybe there is a better way.
Thinking about better solutions is also a part of algorithmic thinking.
How did Bauby do it?
We should remember that the helper can speak, so we should make use of
that. The protocol Bauby used involved the helper reading the alphabet aloud
"A...B...C..." When the letter he was thinking of was spoken he blinked. The
helper would write that letter down and then start again, letter after letter. Try
it with a friend – communicate your initials to them that way...now think about
that being the only way you have to talk to anyone. I hope your name isn't
Zebedee Zacharius Zog or Zara Zootle!
Once you’ve tried it you may have realized there are some more problems we
have to solve to really make it work. Having tried it a few times, you might also
be able to think of other ways to improve the algorithm. What can you come
up with?
One thing you may have realized is that there are more characters than the
26 letters to deal with – we need spaces, digits and punctuation too. We need
to add them to the list too. We need to allocate a number everyone agrees on
(their position in the list) to each new character. Another thing to deal with is
what happens if the person blinks by mistake? We need a way to say; “Ignore
that last blink and start the letter again”. One way might be to agree that
blinking twice quickly means that. Maybe you thought of other problems that
need solving too.
Algorithmic thinking is about thinking about all those details and finding
solutions. It’s about realizing there can be many ways of doing things and
coming up with the best one for a particular situation. Also notice that one of
the issues was about people. In theory our solution works. Just blink at the
right time. We could arrogantly say the people should just do the right thing
and it’s their fault if they get it wrong. In practice they will sometimes blink at
the wrong time. It’s better if we solve the problem in a way that does work for
people. After all it is a person we are trying to help in the first place!
Computational thinking is about ‘understanding people’ too
Doing it better
One way to speed things up is to realize that sometimes halfway through a
word you can guess what it is. If you have got “a-n-t-e-l” it would be a pretty
good bet to assume it was antelope. So you could change the rules to allow

the helper to make guesses like that. We’d need a way for the person to say
no after such a guess – perhaps the rule could be that they just blink if the
word is right and do nothing if not. This is of course essentially what predictive
texting does – it’s the algorithm phones use. Maybe that’s where you got the
idea from if you thought of it! If so then you’ve just used another
computational thinking skill: ‘transforming problems’. Often problems turn out
to be essentially the same as something you’ve already seen in a different
situation. If you already have a solution for that other problem then you can
just use it. Algorithms are just a way of giving this kind of general solution. A
phone has the same problem working out what words are being typed as a
helper has working out the word someone with locked-in syndrome is thinking.
Once we realize that then any solution we come up with for one can be used
for the other.
Bauby’s helpers did do a version of predictive texting. Bauby also realized that
the ABC algorithm could be improved upon in a different way. He had been
the Editor-in-chief of the French women's magazine, Elle, before that hospital
bed, so knew a lot about language. He knew that some letters are more
common than others in natural language. E is the most common letter (in both
English and French) for example. He therefore got the helper to read out the
letters in order of frequency in French "E...S...A...R..." That way the helper got
to the common letters more quickly.
The algorithm for finding the letter frequencies was actually invented by
Muslim scholars over a thousand years ago. A similar trick has been used
through the ages to crack secret codes. In fact Mary Queen of Scots was
behead because Queen Elizabeth I’s spymaster Sir Francis Walsingham was
better at computational thinking in this way than she was. That’s another story
though.
Bauby’s idea of using frequency analysis is another example of ‘transforming
problems’. Once we have recognized that cracking codes and guessing
letters are similar problems, we can see that the frequency analysis solution
invented for one can be used for the other.
How fast is that?
Let’s get back to Bauby’s algorithm. We’ve improved things for sure. The new
ways must be better than our original idea. An obvious question though is how
fast actually is it – “How long did it take to write that book?” Is it the best we
can possibly do, or could we have come up with an even better algorithm, and
so helped him write the book much more easily?
We need a way of measuring how good an algorithm is. One way would be to
do it experimentally – to time how long each takes to communicate some
specific passage. We could do it lots of times with different people and see
which way is fastest on average. That would take lots of time and effort. There
is a better way.
We can do some ‘analytical thinking’. We will use some simple maths to
work out an answer. First, rather than think about time let’s think about the
work done. If we count how many letters of the alphabet the helper has to say,
then we could always then turn that in to the time taken by working out how
long it takes to say a letter. We have done something called ‘abstraction’. It

is another aspect of computational thinking, used to simplify problems.
Abstraction is just a long word meaning ‘hiding some of the details’. The idea
is used throughout computing as a way of making things easier to do. Here
we are using “number of letters said” as an abstraction of the actual time
taken.
So how do we work out how many letters have to be said? There are several
questions we can ask. The simplest is: what is the best case? That is, what is
the fewest letters the helper would possibly have to say to write the book? We
could also look at the worst case. If we are unlucky, how bad could it be?
Finally we can look at the average case – that will give us a realistic estimate
of how much work it actually took.
Let’s, for the sake of argument, stick to communicating just letters of the
alphabet without punctuation, etc. We will analyse our simple algorithm of the
helper saying A, B, C …
In the best case, the whole book would be nothing but A’s: “AAAAAAAA”
(perhaps expressing the pain he is in). To communicate a single letter ‘A’ we
just say one letter ‘A’ (one question) and we have the answer. Multiply that by
the number of letters in the book and we have the best case for writing the
whole book. The worst case, perhaps dictating a story where someone snores
the whole time, "ZZZZZZ", takes 26 questions to get each letter. That gives us
the bounds on what communicating anything would be – no better than 1 and
no worse than 26 letters spoken per letter communicated.
A closer estimate would be the average number of questions asked per letter:
the average case. But that’s easy to work out. In a long message, for every ‘A’
you communicate, on average there will also be a ‘Z’ somewhere else in the
message. For every ‘B’ there will be a ’Y’, and so on. That means on average
over the whole book roughly 13 questions will be asked per letter dictated.
Multiply the number of letters in the book by 13 and you have an estimate for
the amount of work done to write it. Multiply that by the average time for the
helper to say a letter and you have the time taken to communicate the book.
Bauby's modification, asking about common letters first, improves things a bit
– maybe it will be down to 9 or 10 letters spoken. We could work that out
more precisely using a different kind of maths, based on the frequencies of
the letters. So it is an improvement, but the worst case for a letter is still 26
and as any computer scientist knows we can do far better. It is possible to
work each letter out with only 5 questions, guaranteed. That’s not the average
case, it’s the worst case!
Can you work out what 5 questions you need to ask?
Do it in 5
Whether you came up with the answer or not, I guarantee you know
instinctively what the right sort of question is, but only if we look at a different
problem.
Let’s play a game of 20-questions – the children’s game where I think of a
famous person and you try and guess who I’m thinking of by asking
questions. The twist is that I will only ever answer yes or no. Play a game with
a friend, thinking about the kind of questions you ask as you do.

Let’s see how a game might go.
“Are they female?”
No
“Are they alive?”
No
“Are they a film star?”
No
“Are they from Britain?”
No
“Are they from America?”
No
“Are they from Asia?”
Yes
“Are they from India?”
Yes
 “Are they a politician?”
Yes
“Is it Ghandi?”
Yes
Chances are when you played the game, you asked similar questions. You
almost certainly didn’t start by asking questions like “Is it Adele?”, “Is it Usain
Bolt?”, “Is it the Queen?”. You would never have got the answer in 20
questions that way. You only ask that sort of question (as in our game above)
at the end when you are pretty sure you know who it is. Instead you probably
asked a question like "Are they male?" first.
Why is that a good first question? Well, it’s because it rules out half the
possibilities, whatever the answer. If you ask “Is it Adele?” then you rule out
all but one if you are right, but if wrong (more likely) you only rule out one
person. You would have to be lottery-winning lucky to do well that way. So the
secret to playing 20 questions is to ask questions that rule out half the
possibilities each time.
How good is that?
How good is that? Well let’s suppose I might be thinking of one of a million
people at the start. If I rule out half the people each question, how many
questions does it take? After one question, we are down to 500,000 people
left, 2 questions 250,000, then 125,000 people, about 64,000 people
(simplifying a little to make the numbers easier!), 32,000 people, 16,000,
8000, 4000, 2000, 1000… After 10 questions there are only 1000 people left
out of the original million it could be. Keep going…500 left after another
question, 250, 125, 64 (ish) 32, 16, 8, 4, 2 and on the 20th question there is
only one person left it could be. If you can ask perfect halving questions you

are guaranteed to win.
So with the right questions, in the worst case it takes only 20 questions to find
the one thing I am thinking of out of a million possibilities. Compare that with
our saying on average it takes us 13 questions (and worst case 26) to find
one thing out of 26 letters of the alphabet. Yes/No is no different to Blink/No
Blink. When we asked, is it A? Is it B? we were doing the equivalent of asking
“Is it Nelson Mandela?”, “Is it Mickey Mouse?” You are trying to work out one
of many things I am thinking of, just the same. It is actually the same problem!
A new algorithm
That’s where the idea of ‘transforming problems’ comes in again. If it’s the
same problem then surely the same strategy will give us a better solution than
the ones we came up with so far. What is the equivalent of our halving
solution for letters of the alphabet? We need to halve the letters of the
alphabet left each time. The obvious first question is "Is it before N?" The next
question depends on the answer to the first one. If the answer was “Yes” then
we next ask, “Is it before F?” If the answer was no we ask “Is it before T?” and
so on. This way we guarantee to get to any letter of the alphabet that the
person is thinking in only 5 questions.
In fact we can even improve things a little using the frequency analysis trick.
With only 26 letters we could for example make it so we get the letter E in only
3 questions. Similarly we could still use the predictive texting trick to guess
words that were only partly completed. All those solutions still apply here.
Search algorithms
The reason our solution carried over is because the problem was essentially
the same. The problem is a ‘search problem’: given a series of things, find
one particular one we are looking for. The solutions to this problem are called
‘search algorithms’. They are methodical ways of finding things. The first
approach of checking each of the possibilities in turn (Is it A?, Is it B?...Is it
Adele? Is it James Bond? …) is an algorithm called ‘linear search’.
Sometimes it’s the best you can do. For example, if you see a robbery and the
police set up an identity parade, you couldn’t do better than linear search –
check each face in turn until you see the person in the line who did it! Linear
search works well when there is no order to the things you are searching
through. If you are searching for a jumper that could be in any draw of your
chest of drawers, start at the top and check them one at a time in order.
The other algorithm we looked at involved finding halving questions: Is it
before N? Are they female? Finding halving questions is a general problem
solving strategy called ‘Divide and conquer’. If you can come up with a
divide and conquer solution to a problem, it is likely to be very fast as
repeated halving gets you down to one answer very quickly, and certainly
faster than checking one thing at a time. The simplest divide and conquer
search algorithm is called ‘binary search’. Imagine lining all the things you
are searching through in order, smallest at one end, largest at the other.
Binary search involves going to the middle and checking whether the thing
you are looking for comes before or after it. You then discard the other half
and do the same again on what is left. You keep doing that until only one
thing is left – the thing you were looking for. That is probably close to what

you do if given a big paper telephone directory and want to find a particular
name. You certainly wouldn’t start at page 1 and check each name in turn
until you find the one you are looking for!
There are many more search algorithms than just these two. For example,
how does Google search through every web page on the planet in fractions of
a second? It needs a better algorithm still!
Search algorithms make use of another form of abstraction. We abstract
from the details of the particular search problem and see it as just a search
problem. Then our search algorithm is a ready-made solution for lots of
problems.
Improving life for Bauby
So Bauby should have got the helper to ask halving questions. Think about it.
5 questions at worst rather than 13 on average, multiplied up by all the letters
in his book. It’s not only the book either, it’s communicating with his friends
and family, the doctors and nurses too. If only he had known some computer
science, how much easier his life would have been!
Algorithmic thinking first
The thing to notice though is we haven’t been looking at technology at all. So
far it has all been about two people communicating. Now we have worked out
a good method, a good algorithm, we can think how we could automate it with
suitable technology. We could build an eye tracking system that detects blinks
or an electrode cap that can pick up whether he is thinking yes or no,
perhaps. The point is that whatever technology we use it would need a search
algorithm underneath it. Pick the wrong one and however good the technology
is, the communication will still be slow – 13 questions instead of 5. It makes
no difference whether the helper is a computer or a human for that. If we
hadn’t thought about the algorithms first we could have come up with a
frustratingly slow system. Computer science is not just about the technology it
is about the computational thinking that goes into coming up with good
solutions.
Understanding people first?
So we all agree with a little bit more computational thinking Bauby’s life could
have been improved. But wait a minute. Perhaps we got it wrong. Perhaps we
would have ensured his book was never completed and his life was even
more a hell. We did not start with technology but we did start with computer
science. Perhaps we should have started with the person. Were we counting
the right thing?
As our measure of work – our ‘abstraction’ we used the number of questions
asked. That is the job of the helper and it may be tedious but it's not difficult.
What if blinking was a great effort for Bauby. His solution involved him blinking
only once per letter. Our divide and conquer approach requires him to blink 5
times. Multiply that by a whole book. We could have made it 5 times harder.
It could be blinking is easy and our method is better. We don’t know the
answer, because we didn’t ask the question. We should have asked it first.
We should have started with the person.

Furthermore, his solution is easy for anyone to walk in and understand. Ours
is more complex to follow and might need some explaining before the visitor
understands and Bauby is not going to be the one to do the explaining.
It worked for him
One thing is certain about Bauby's solution – it worked for him. He wrote a
whole book that way after all. Perhaps the helper did more than just write
down his words. Perhaps they opened the curtains, talked to him about the
outside world or just provided some daily human warmth. Perhaps the whole
point of writing the book was that it gave him an excuse to have a person
there to communicate with all the time, paid for by his publisher!
The communication method would not then be about the needs of the book,
but the book helping a deep need for direct communication with a person.
Replace the human with technology and perhaps you have replaced the thing
that was actually keeping him alive.
On the other hand, perhaps once he is able to communicate with a computer
he can get out of his hospital bed into the virtual world, emailing friends,
tweeting, keeping a face book page, controlling an avatar. Perhaps we have
made things better. Again we need to find out what he really wants.
In an extreme usability situation like this the important thing is that the user
really is involved throughout. We call this ‘user-centered design’. In fact it’s
better when designing any system for people, not just in extreme situations
that they are involved. It is they who ultimately have to adapt the available
resources to something that works for them, not only technically but also
emotionally and socially. Otherwise we may devise a ‘solution’ that is in theory
wonderful but in practice hell on earth. Computer Scientists have to think
about much, more than just computers.

 A summary of the computer science
Search algorithms
Given something to search for (the ‘key’) a ‘search algorithm’ guarantees to
find it if it is there. The key could be a letter someone is thinking of, a number
in an array, a film star’s web page, or a record in an employee database.
One simple search algorithm is called ‘linear search’. It involves lining up all
the things you are searching through and checking them one at a time from
one end to the other. If you find the thing you are looking for you can stop,
noting its position so you can go straight back to it. If you get to the end
without finding it then you know for sure that it is not there at all.
A faster way of searching is called ‘binary search’. It involves lining
everything up in a known order, like numerical order or alphabetical order.
That allows us to do checks that rule out half of the list at every step. We
check the middle entry. If the key is before the middle entry in the order then
the key must be in the first half of the list (because they are in order). If the
key comes after the middle entry then it must be in the second half. We rule
out half the list and do the same again on the part that remains – repeatedly
until there is only one thing left. It is either the key, or the key is not there.

Efficiency Analysis
There are lots of different algorithms for searching. How can we choose
between them? One way is on the basis of how efficient they are. We can
choose a particular critical operation that gives a good idea of how much work
is done. We can then work out how often it is used in the best case, the worst
case and on average.

Computational Thinking
Computational thinking is ultimately about solving problems for people.
People therefore come first. You have to understand the problem you are
solving from their point of view, before you dream up solutions. Otherwise
your great technical solution will be useless. To be a great computer scientist,
you have to understand people.
Algorithmic thinking is about devising a precise way to do a task, with all the
details covered. Given an algorithmic solution other people (or computers)
can then follow the instructions mechanically. They don’t need to solve the
problem themselves to get answers. Follow a search algorithm and you find
whatever you are looking for.
One way to come up with solutions is to spot when one problem is the same
as another. If we can transform problems into ones we have seen before
then we can just reuse the solution. Once we have a good search algorithm
we can adapt it for use with lots of different search problems.
We can use analytical thinking to give us solid ways to compare different
algorithms. By using abstraction we focus on the details that matter – though
we have to make sure we don’t lose the details that matter! The method that
is best for our purpose might be the fastest but other properties like memory
needed could matter too.

